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Abstract
Mass spectrometry (MS)-based metaproteomics is used to identify and quantify proteins in microbiome
samples, with the frequently used methodology being Data-Dependent Acquisition mass spectrometry
(DDA-MS). However, DDA-MS is limited in its ability to reproducibly identify and quantify lower abundant
peptides and proteins. To address DDA-MS deficiencies, proteomics researchers have started using
Data-Independent Acquisition Mass Spectrometry (DIA-MS) for reproducible detection and quantification
of peptides and proteins. We sought to evaluate the reproducibility and accuracy of DIA-MS
metaproteomic measurements relative to DDA-MS using a mock community of known taxonomic
composition. Artificial microbial communities of known composition were analyzed independently in three
laboratories using DDA- and DIA-MS acquisition methods. DIA-MS yielded more protein and peptide
identifications than DDA-MS in each laboratory. In addition, the protein and peptide identifications were
more reproducible in all laboratories and provided an accurate quantification of proteins and taxonomic
groups in the samples. We also identified some limitations of current DIA tools when applied to
metaproteomic data, highlighting specific needs to improve DIA tools enabling analysis of metaproteomic
datasets from complex microbiomes. Ultimately, DIA-MS represents a promising strategy for MS-based
metaproteomics due to its large number of detected proteins and peptides, reproducibility, deep
sequencing capabilities, and accurate quantitation.
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Introduction
Metaproteomics can provide direct functional readouts along with taxonomic information for a

microbiome1, thereby holding great potential for medical2 and environmental3 microbiology applications.
Metaproteomics uses bottom-up mass spectrometry-based proteomics to identify and quantify proteins in
microbiome samples. The general shotgun proteomic process involves isolation of protein from samples,
digestion into peptides, separation by liquid chromatography, and analysis of the peptides on the MS4.
Over the past two decades5–7, the most common methodology for analysis of peptides has been
Data-Dependent Acquisition mass spectrometry (DDA-MS).

In DDA-MS for shotgun proteomics, the mass spectrometer selects the most abundant ions that
enter the instrument at any given time and isolates the ions for a controlled fragmentation8. Ideally, the
mass spectrometer isolates a single peptide ion population per fragmentation spectrum, however that is
not always the case9. A database search algorithm matches the experimental spectrum to in silico spectra
generated from a protein sequence database to identify a peptide10. Previous studies have shown that
this approach can effectively identify proteins in microbial communities at the species or sometimes even
strain-level11–13, and more effectively measures percent biomass contributions of individual species than
DNA sequencing-based methods14. For DDA-MS, the relative abundance of peptides at any given instant
in the detector is partially stochastic due to ion interference and suppression15. As a result, DDA-MS is
limited in its ability to reproducibly identify and quantify less abundant peptides and by extension proteins
due to its inherent filtering for only the most abundant parent ions.

Advances in high resolution MS, faster scan speeds, and computational methods able to identify
fragments from multiple peptides within a single spectrum16,17 resulted in the potential for an alternative
acquisition method called Data-Independent Acquisition Mass Spectrometry (DIA-MS). DIA-MS
represents a potential method for counteracting the deficiencies of DDA-MS. In DIA-MS, the mass
spectrometer fragments all ions within a given range of mass-to-charge ratios, detecting the resulting ion
fragments together, after which the instrument cycles to a new mass-to-charge range18. In DDA-MS,
specific pairs of precursor and product ions are matched to peptides in a protein database. By contrast, in
DIA-MS, there are two potential strategies. In the first, assorted precursors and products are combined
into pseudo spectra which are searched against spectral libraries19, such as in the OpenSWATH suite20.
These spectral libraries were originally constructed from DDA data, though they can now be generated
directly from FASTA databases21 as in the directDIA analysis of Spectronaut22. In the second method,
peptides from the FASTA libraries are iteratively searched against the MS spectral data to ascertain their
presence23 as in the DIAmeter suite24. In both cases, DIA-MS theoretically allows for all ions regardless of
their abundance to be detected, potentially allowing for more reproducible detection and quantification.
Since the complexity of metaproteomics data precludes the efficient use of DDA-MS generated spectral
libraries, it was the invention of directDIA software tools that allowed DIA to be feasible for
metaproteomics. While several metaproteomics studies have been performed with DIA-MS25,26, it is
currently unknown how accurate DIA-MS is compared to DDA-MS.

The objective of this study was to evaluate and compare the quality of identification and
quantification of DDA-MS and DIA-MS metaproteomic approaches across three laboratories. We used a
previously published 32-species mock community containing multiple bacteria, archaea, eukaryotes and
viruses (Supplemental Table 1) to directly compare the ability of DIA-MS with DDA-MS to qualitatively and
quantitatively characterize a microbiome14. We analyzed three types of mock communities in 4 biological
replicates each: 1) using equal numbers of cells from each microorganism; 2) equal amounts of protein
from each microorganism; and 3) uneven amounts of cells and protein from each organism (Figure 1A).
To avoid that differences in sample processing influence the comparison, we prepared peptides in one
laboratory and aliquoted them for subsequent analysis in the three participating laboratories. The 12
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peptide samples were analyzed by the laboratories using DDA- and DIA-MS methods written for three
different types of Orbitrap mass spectrometers. From there, the resulting DIA results were processed
using directDIA analysis in Spectronaut. With the acquired data, we compared DIA-MS to DDA-MS from
the following perspectives: a) the number of proteins and peptides that were detected in each sample
using each LC-MS setup, b) the reproducibility of these protein and peptide measurements, c) the relative
composition of the uneven samples, d) the per species depth of measurement, d) the relative quantitative
accuracy for each species, and e) the number of proteins falsely identified when the protein database is
constructed with species that are not present in the sample.
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Figure 1: An outline of the generation of mass spectrometry data from the mock microbial
communities. A) Illustration of mock community construction. 32 species and strains were used for the
construction of three distinct community types. Four biological replicates each of the Equal Cell Number,
Equal Protein Amount and Uneven were subjected to tryptic digestion. Peptides from all 12 samples were
aliquoted, and sent to three laboratories for liquid chromatography and mass spectrometry. Figure
adapted from Kleiner et al. 2017. DDA-MS data was analyzed using Proteome Discoverer (Pd) and the
DIA-MS data was analyzed using Spectronaut software. B) Comparison of the number of proteins and
peptides detected by DDA-MS versus DIA-MS using 95% confidence intervals (whiskers that do not
overlap denote significance). Proteins were inferred by at least 1 protein unique peptide (PUP), and
proteins and peptides were both inferred with an FDR of 1%.
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Methods
Mock community sample preparation

Microbial mock communities (model microbiomes) were generated and frozen at -80℃ for a
previous study14. Briefly, 32 cultures of archaea, bacteria, eukarya and phages were used. We used four
replicates, each of three of mock community types: 1) equal amounts of cells from each microorganism
referred to as Equal Cell Number hereon); 2) equal amounts of protein from each microorganism (Equal
Protein Amount hereon); and 3) randomized, uneven amounts of cells and protein from each organism
(Uneven hereon). To generate the mock communities, cell pellets of each species were reconstituted and
combined to generate multiple aliquots of each community and replicate before being snap frozen.
Peptides from 12 samples (3 mock community types x 4 replicates) were generated using the filter-aided
sample preparation (FASP) protocol described by Wiśniewski et al.27 The resulting peptides were desalted
using Sep-Pak C18 Plus Light Cartridges (Waters, Milford, MA, USA) following the manufacturer’s
instructions. Peptide concentrations were determined using the Pierce Micro BCA assay (Thermo
Scientific Pierce, Rockford, IL, USA) following the manufacturer’s instructions. Aliquots of each sample
were sent to the Griffin and Saito laboratories at the University of Minnesota and Woods Hole
Oceanographic Institution, respectively, for analyses to complement analysis conducted at the Kleiner
laboratory at NC State University.

Construction of protein sequence databases
A protein sequence database for the mock community was generated by combining the

proteomes of all species in the mock community into a protein database called
“Mock_Comm_RefDB_V3_Clustered95.fasta” (112,580 sequences). Proteomes were acquired from
UniProtKB or NCBI and are detailed in Supplemental Table 1. We made additional protein databases to
test how the exclusion of specific species in the protein sequence database would affect the detection
and quantification of other microbial proteins (Supplemental Table 1); a database called
“Mock_Comm_RefDB_V3_Incomple1C95.fasta” (100,675 sequences) was generated that lacks the
proteomes for Rhizobium leguminosarum bv. viciae 3841, Pseudomonas denitrificans, and Pseudomonas
fluorescens. To further test this, the proteomes for Pseudomonas pseudoalcaligenes, Salmonella enterica
Typhimurium LT2, and Rhizobium leguminosarum bv. viciae VF39 were removed from
Mock_Comm_RefDB_V3_Incomple1C95.fasta to generate the database
“Mock_Comm_RefDB_V3_Incomple2C95.fasta” (84,216 sequences). To test the degree of
misidentification of proteins that are not present in the mock community samples, a database was created
by adding the protein sequences of Bacteroides thetaiotaomicron (different phylum), Buttiauxella
brennerae (different genus), Salmonella bongori (different species), and Tistrella mobilis (different class)
to Mock_Comm_RefDB_V3_Clustered95.fasta resulting in “Mock_Comm_RefDB_V3_Added1C95.fasta”
(131,690 sequences). We also added these genomes from the Added 1 database to the Incomplete 1 and
Incomplete 2 databases to generate“Mock_Comm_RefDB_V3_IncompleteAdded1C95.fasta” (119,785
sequences) and “Mock_Comm_RefDB_V3_IncompleteAdded2C95.fasta” (104,513 sequences)
(Supplemental Table 1). Each protein database was clustered at 95% identity to remove redundant
sequences using CD-HIT28.

LC-MS/MS conditions
The microbiome samples were analyzed via LC-MS/MS in three separate laboratories using three

separate instrument setups. For each mock community, four replicate samples were assayed. In all
laboratories, water with 0.1% formic acid was used as mobile phase A and acetonitrile with 0.1% formic
acid was mobile phase B for LC applications.

For the Griffin lab at the University of Minnesota, samples were analyzed on a Thermo QExactive
Quadrupole Orbitrap Hybrid Mass Spectrometer interfaced with an Ultimate 3000 UHPLC run in nano
mode and plumbed with a nanoLC column packed with Luna C18 5µm resin (15 cm x 75 µm). For DDA
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analyses, the instrument was run in positive mode using Full MS/dd-MS2 Top 15 mode. For the Full MS
scan the resolution was 35,000 with an automatic gain control (AGC) target of 1e6, a maximum injection
time (IT) of 30 milliseconds, and a scan range of 400-1600 m/z. Data-dependent MS2were collected at a
resolution of 17,500 with an AGC target of 1e6, a maximum IT of 50 milliseconds, an isolation window of
2.0 m/z and a scan range of 200 - 2000 m/z. To conduct DIA analyses, Full MS scans were combined
with DIA scans, both of which were run in positive mode. For the Full MS scan, the resolution was 35,000
with an AGC target of 1e6, a maximum IT of 200 milliseconds, and a scan range of 385-1015 m/z. For the
DIA scan, the resolution was set to 17,500 with an AGC target of 1e6, a loop count of 25, an isolation
window of 24 m/z, and two sets of staggered DIA scan windows from 400 to 1000 m/z and from 388 to
988 m/z.

In the Saito lab at Woods Hole Oceanographic Institution, measurements were performed on a
Thermo Fusion Orbitrap Tribrid Mass Spectrometer interfaced with an Ultimate 3000 RSLCnano system
plumbed with a nanoLC column packed with C18 Reprosil-Gold 3µm resin (15 cm x 100 µm). For DDA
analyses the instrument was run in positive mode with a full scan at resolution 240,000, a scan range of
380-1280 m/z, standard AGC targeting, an automatic maximum injection time mode, an intensity
threshold of 1.0e3, and cycle time mode with 2 seconds between full scans; following the full scan was a
data-dependent MS2 scan in which the normalized collision energy was 27, the ion trap was employed as
the ms2 detector was .. In DIA experiments there were four scans; first a master scan ran in positive
mode at resolution 60000 with a scan range of 385-1015 m/z, next a DIA experiment in positive mode
with 25 scan windows of 24 m/z width and a range of 400-1000 m/z at 30,000 resolution and normalized
collision energy of 27, followed by a second master scan, and concluding with a second DIA experiment
in positive mode with 25 scan windows of 24 m/z width and a range of 412-988 m/z.

In the Kleiner lab at North Carolina State University, peptides were separated along a 140 minute
reverse phase gradient using an Ultimate 3000 RSLCnano system interfaced with a 75 cm x 75 µm
analytical EASY-Spray PepMap RSLC C18 column. This system was coupled to a Thermo Orbitrap
Eclipse Tribrid Mass Spectrometer. For DDA analysis the instrument was run in positive mode with a full
scan at resolution 60,000, a scan range of 380-1600 m/z, and AGC target of 300% (3.0 x 106 charges) a
maximum injection time of 200 ms. For data-dependent MS2 acquisition, there were 15 dependent scans,
at a minimum intensity threshold of 5x103, with a 25 minute exclusion list. For MS2 scans ions were
fragmented with an HCD collision energy of 27% and measured at a resolution of 15,000, an AGC target
of 100% (1 x 105 charges) and a maximum injection time of 50 ms. For the DIA experiments there was
first a full scan run in positive mode at a resolution of 60,000, with a scan range of 380-1600 m/z, a 200
ms maximum injection time, and an AGC target of 300%. Data-independent MS2 scans were collected on
a 30 spectra loop in isolation windows of 10 m/z over the range of 384-1000 m/z. MS2 scans were
fragmented at an HCD collision energy of 27% and measured at a resolution of 15,000, an AGC target of
100%, and 50 ms maximum injection time.

Data Analysis
Raw DDA mass spectrometry files were searched against microbial community protein sequence

FASTA files using Proteome Discoverer (v2.3)29. The processing steps used Sequest HT and Percolator
to match peptide spectra to the mock community protein sequence FASTA files. In Sequest HT, trypsin
was selected as the enzyme with a maximum missed cleavage number of 2. The precursor tolerance was
set to 10 ppm and the fragment tolerance was set to 0.1 Da. For spectrum matching, b- and y-ions were
selected. Methionine oxidation, deamidation (N,Q,R), and protein N-terminal acetylation were set as
dynamic modifications while carbamidomethylation of cysteine was set as a fixed modification. Each raw
file was searched separately and consensus was only used to output the data from each individual
search.

The raw mass spectrometry files were imported into the Spectronaut software22 version
18.3.230830 along with the protein sequence FASTA databases. Spectronaut was then run with the
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directDIA+ workflow with 20 ppm MS1 and MS2 relative tolerance at the Calibration search and Main
Search levels and a false discovery rate of 0.01 at the PSM, peptide, and protein group level. Trypsin/P
was selected as the protease with two missed cleavages allowed and cysteine carbamidomethylation was
set as a fixed modification. In addition, protein N-terminal acetylation, glutamine/arginine/asparagine
deamidation, and methionine oxidation were selected as variable modifications to peptides.

Proteins were inferred if they had at least 1 protein unique peptide and a protein FDR <1%. The
mean number of protein groups and peptides detected across each method were compared to one
another using 95% confidence intervals. The degree of detected peptide overlap between replicates was
determined using UpSet plots. Comparison of measured and reference percent abundances of
constituent species in Uneven samples was conducted qualitatively using a bubble plot and quantitatively
via Spearman correlation. Quantitative comparison of DDA- and DIA-MS runs was done using the metric
below comparing the measured percent abundances to the theoretical percent abundances in the
constant protein and uneven protein samples.

𝑙𝑜𝑔2( 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 % 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒
𝐾𝑛𝑜𝑤𝑛 % 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 )

The 95% confidence intervals for this metric were calculated using the values from each species present
in the sample and were compared with one another. We calculated the 95% confidence intervals of the
mean total number of protein matches for alternative protein sequence databases to examine the effect of
additional or missing protein sequences on the number of protein matches. To determine the rate of false
positive detections, the 95% confidence intervals were calculated for the mean percentage of protein
identifications to added and incomplete databases described previously.

Figures were generated using the R statistical computing software v4.2.2 with the Rmisc30 and
ggplot231 packages.
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Results

DIA methods result in more proteins and peptides detected than with DDA regardless of inference
method

To compare the number of identifications generated by our DIA approaches relative to our DDA
approaches we compared the 95% confidence intervals of the mean between DIA and DDA for all
measurements and community types (Figure 1B). DIA consistently detected significantly more proteins
and peptides than DDA methods at a protein false discovery rate (FDR) of <1% across all communities
(Equal Cell Number, Equal Protein, and Uneven) and instrument types.

DIA methods are more reproducible in their detection of peptides
To compare measurement reproducibility between DIA and DDA, we analyzed how many

peptides were reproducibly detected across all the measurements using UpSet plots (Figure 2;
Supplementary Figure 1). Using DIA methods regardless of method and community type almost all the
peptides detected were detected in all four replicates. In contrast, across all community types the DDA
methods had a large number of peptides detected in only one of the four replicates. These results show
that DIA methods were more reproducible than DDA methods.
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Figure 2: Data Independent Analysis mass spectrometry yields more peptide identifications more
reproducibly. UpSet plots of peptide identification reproducibility of Uneven communities across three
mass spectrometers (QExactive, Fusion, and Eclipse) under DDA- and DIA-MS analysis. The variables
n1 through n4 represent MS runs of the four replicates. Peptides were filtered at 1% FDR.
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DIA methods result in comparable detection of proteins from low abundance species to DDA
Since the compositions of the mock microbial communities used in this study were known, we

were able to determine if our methods accurately reproduced the known species abundances in terms of
their proteinaceous biomass contributions. We compared the percent abundance of the species using our
DDA and DIA methods to the known amount of protein added for each species to the community (Figure
3a). In all analyses, DDA and DIA both detected similar percent compositions to the known community
composition, with Spearman correlation values between the known % abundances and the measured %
abundances of DDA- and DIA-MS data averaging at 0.946 and 0.924, respectively (Supplemental Figure
2). In all instances, we detected Salmonella enterica Serovar Typhimurium LT2 (LT2) as
underrepresented relative to the known % abundance, while Cupriavidus metallireducens (Cup) and
Escherichia coli (K12) had inflated % abundances relative to the known composition.

By examining the less abundant species in the mock communities, we investigated whether
DDA-MS or DIA-MS was able to detect a greater fraction of the total proteome (the number of detected
proteins out of the total number of protein-encoding genes) of these species. We found that we detected
significantly more peptides from the low abundance species in DDA relative to DIA in the Uneven
samples (Supplemental Figure). To further investigate this, we quantified the fraction of the total proteome
for the 25% least abundant species based on sample formulation (Figure 3b and Supplemental Table 1).
Interestingly, we found that DDA-MS trended towards slightly higher fractions of low abundance species
in the Uneven samples, but this was not significant by the Mann–Whitney–Wilcoxon test (Figure 3b). Thus
while DIA outperformed DDA for the whole community analysis (all species in mock communities, Figures
1 and 2), this advantage disappears when focused solely on rarer organisms, and both methods are
equally adept at detecting low abundance species, though DDA detects more peptides.. In examining the
individual species, DIA-MS tended to detect higher fractions of the more abundant species than DDA-MS
(Supplemental Table 2).
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Figure 3: DIA-MS recapitulates the proportions of the microbial communities seen in DDA-MS. a)
Known community composition of the Uneven mock community samples compared to the percent
abundance of each species as determined by multiple instruments, acquisition methods and software
types. % Abundances were calculated based on the summed spectral counts (DDA-MS) or summed
intensities (DIA-MS) of each species divided by the total MS signal14 b) Number of detected proteins
divided by the total number of protein-coding genes in the genome of bottom 25% least abundant species
in microbiome samples. DDA- and DIA-MS samples were compared using a Mann-Whitney-Wilcoxon
test, with the p-values displayed above the bars. Boxes represent the 1st through 3rd quartile of the
measured values of multiple measured species, while whiskers extend up to 1.5 times the interquartile
range from the box to encapsulate data points outside the interquartile range; data points beyond this
range are expressed as points on the graph.
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DIA methods result in a comparable level of quantitative accuracy to DDA

To assess the quantitative accuracy of DIA methods for proteomics, we calculated the log2 of the
measured percent abundance of each species in the community divided by the expected percent
abundance of that species for each method and community type and then calculated the 95% confidence
intervals of the mean value (Figure 4a). In this analysis, values of zero mean that the measured percent
abundance of a species is equal to its expected abundance based on the physical amount of that
organism's protein that was input into the mock community. For all methods and community types the
confidence intervals overlapped between DDA and DIA indicating that they do not differ in accuracy. In
addition, for some of the methods the confidence interval overlapped with zero in the equal cell and
uneven communities suggesting that the quantitative accuracy was within a confidence interval of 95% for
these measurements.
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Figure 4: Assessment of the quantitative accuracy of the mass spectrometry methods for
determining species abundances in the mock communities. Data represent the 95% confidence
intervals of the base 2 log of the ratio of the measured species abundances to the known species
abundances.
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DIA and DDA methods result in a comparable number of false protein identifications when
challenged with incomplete databases with entrapment organisms

There is a degree of unavoidable uncertainty when it comes to protein sequence database design
for experimental metaproteomics datasets. Depending on the methods used for database generation,
protein sequences from microorganisms present in the sample are potentially missing in the search
database and conversely protein sequences from microorganisms that are not present in the sample
might get included in the search database32. The defined nature of this sample set allowed us to
investigate the effects of including protein sequences from species in the database that are not present in
the samples and excluding protein sequences from species present in the sample from the database. To
do this, we generated five additional databases: incomplete 1 (I1), incomplete 2 (I2), added (A1),
incomplete added 1 (A1I1), and incomplete added 2 (A1I2) (Supplementary Table 2). Incomplete
databases progressively increase the number of genomes missing. For incomplete 1, Rhizobium
leguminosarum bv. viciae 3841, Pseudomonas denitrificans, and Pseudomonas fluorescens were
removed. For incomplete 2, Pseudomonas pseudoalcaligenes, Salmonella enterica Typhimurium LT2,
and Rhizobium leguminosarum bv. viciae VF39 were also removed. For all three added databases, the
protein sequences of Bacteroides thetaiotaomicron, Buttiauxella brennerae, Salmonella bongori, and
Tistrella mobilis were added as entrapment sequences to generate potential false protein identifications.
We selected these four bacterial genomes because they had varying amounts of genetic distance from
the organisms present in the mock community: B. thetaiotaomicron was in a different phylum from any of
the bacteria in the mock community, T. mobilis was in a different class from any bacteria in the mock
community, B. brennerae shared the same family with multiple members of the community but was in a
different genus, and S. bongori shared the same genus but is a different species from S. enterica which
was removed in the incomplete 2 database. We hypothesized that we would identify some number of
false protein identifications from all the added species, but that we would detect more false protein
identifications in the incomplete added 2 database due to peptides being assigned to S. bongori due to
the removal of S. enterica from the incomplete 2 database. We use the term “false protein identifications”
in a loose sense here, as it is likely that cross-species identification of peptides and proteins occurs where
the correct peptides and proteins are identified with sequences of a closely related species in the absence
of the sequences from the correct species if the sequences share stretches in which they are identical.

We found that regardless of the inference method, removing protein sequences from the
database had a greater impact on the total number of identifications than adding entrapment protein
sequences (Figure 5A-5F). For all methods, the confidence intervals generally overlapped between the
standard, added 1, incomplete 1, and incomplete added 1 databases; however, the number of
identifications significantly decreased when the incomplete 2, and incomplete added 2 databases were
used.

With the added databases we investigated whether the addition of entrapment protein sequences
generated false protein identifications in DIA-MS and DDA-MS (Figure 5G-5H). Across all methods and
community types, we observed that DIA and DDA methods had similar rates of false protein
identifications. However, the rate of false protein identifications decreased when we used a stricter protein
inference criterion (2 protein unique peptides). For the incomplete added 2 database the removal of
sequences from the genome of Salmonella enterica Typhimurium LT2 led to a substantial increase in the
detection of proteins from S. bongori, which led to and increase in the rate of false protein identifications
most likely due to S. enterica peptides being assigned to the homologous sequences of S. bongori. That
being said, many proteins were also detected from B. brennerae and less from T. mobilis and B.
thetaiotaomicron, which are likely could still be matches too similar peptides and homologous proteins,
but could also be true false positive identifications (Supplemental Figure S3).
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Figure 5: DIA measurements misidentify proteins at an equal or lower rate than DDA. The 95%
confidence intervals for number of proteins identified using at least one protein unique peptide (1PUP) for
each of the different database configurations Added (A1), Incomplete Added 1 (A1I1), Incomplete Added
2 (A1I2), Incomplete 1 (I1), Incomplete 2 (I2), and the standard database (STD) for the (A) QE, (B)
Fusion, and (C) Eclipse measurements. The 95% confidence intervals for the number of proteins
identified using at least 2 protein unique peptides (2PUP) for each of the different database configurations
for the (D) QE, (E) Fusion, and (F) Eclipse measurements. Shaded bands represent the 95% confidence
interval of the STD database. (G) The 95% confidence intervals for the percentage of the 1PUP
proteomes that matched entrapment protein sequences in the A1, A1I1, and A1I2 databases. (H) The
95% confidence interval for the percentage of the 2PUP proteomes that matched entrapment protein
sequences in the A1, A1I1, and A1I2 databases. Protein FDR was controlled at 1%.
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Discussion
Our goal for this study was to compare the depth, quantitative accuracy, and identification

accuracy of DIA-MS methods for metaproteomics to DDA-MS methods for metaproteomics using three
different mock microbial communities of known composition. Similar to previous studies, we found that
DIA-methods in general had more protein and peptide identifications than DDA methods across all MS
platforms33. We also observed that the peptide identifications using DIA methods were substantially more
reproducible than DDA methods. For DDA-MS, we found that some peptides (~30%) were identified
across all four replicates regardless of method or community type, but the majority of peptides were found
in only one of the four replicates on all three instruments (Figure 2 top panels). In contrast, for DIA-MS we
observed that the majority of peptides were identified in all four replicates across all MS platforms (Figure
2 bottom panels). This can likely be explained by the stochastic nature of ion fragmentation in DDA-MS
methods, which results in a lack of reproducibility between runs34. In contrast, DIA-MS35 has increased
amounts of reproducibly identified peptides due to the non-stochastic nature of peptide detection in the
DIA-MS analyses as compared to the DDA-MS analyses. In the recent Critical Assessment of
MetaProteome Investigation (CAMPI) study36, which only used DDA-MS data, different wet-lab workflows
showed considerable overlap in protein subgroups, particularly among the most abundant ones. However,
the peptide overlap across these workflows was rather limited. Our study shows that DIA-MS for
metaproteomics is substantially more reproducible at the peptide level than DDA-MS, providing the
potential to increase the reproducibility between experiments and therefore confidence in metaproteomic
analysis.

We further investigated the quantitative accuracy of DIA methods relative to DDA methods by
comparing the relative measured abundances of the species that made up the mock communities to the
species’ known relative abundances. We found that the DIA methods had comparable accuracy to the
DDA methods, which had already been shown to be more accurate than sequencing-based methods for
the quantification of proteinaceous biomass using the same mock communities14. Our results are in line
with a previous study that showed that DIA had a comparable quantitative accuracy to DDA methods
using a 12 member synthetic community33; the authors only presented quantitative accuracy with regards
to log fold changes. In this study we show that DDA and DIA methods are comparable for determining the
percent abundance of an organism within a mock community across multiple domains of life and for a
much larger number of organisms.

Due to the chimeric nature of MS2 spectra, it was possible that DIA-MS metaproteomic methods
would have a greater rate of false positive identifications than DDA-MS despite producing a deeper
proteome. With directDIA identification methods, DIA-MS metaproteomics is just as dependent as
DDA-MS on the quality of the protein database used for identification of peptides and proteins32. To
investigate whether DIA-MS was more prone to false identifications than DDA-MS, we created additional
databases that were missing the proteins from select species known to be in the community and also
added proteins from four species known to not be in the sample and of varying phylogenetic distance
from the members of the community. In general, DIA and DDA methods identified a similar percentage of
proteins from species known to not be in the sample relative to the total number of identifications. We also
found that the combined effect of removing genomes known to be in the sample and adding genomes
known to not be in the sample had a significant effect on the number of identifications, and that this
particular combination had a substantial effect on identification accuracy by increasing the number of
proteins from species known to not be in the sample to >7% of the identifications, even with the stricter
inference threshold of at last 2 protein unique peptides. The majority of the “false positives” in these data
across databases and MS platforms belonged to Salmonella bongori, a species with approximately 83.6%
sequence identity37 to the S. enterica serovar typhimurium strains known to be present in the original
mock community samples analyzed in this study and specifically removed from two of the databases. We
acknowledge that this analysis is not a true measure of the false positive rate since we did not add an
equal number of entrapment proteins as the total size of the protein database, as such many of the
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misidentified proteins were due to peptide matches belonging to homologous proteins from a closely
related species removed from the database or were due to peptide matches that should have instead
been to a similar peptide from a conserved region within a homologous protein that actually was in the
sample. Despite this, we think that this analysis is useful because it shows that DDA-MS and DIA-MS
have similar false identification rates and highlights the importance of careful database design for
metaproteomic studies, regardless of whether a DDA or DIA method is used because having a database
that is not comprehensive and has protein sequences that do not belong can lead to less identifications
and a high number of misidentified proteins overall.

In our work we identified several limitations of bioinformatic analysis of DIA metaproteomics
datasets, which need to be addressed in the future to make it a widely usable approach. We tried multiple
open-source softwares, but were ultimately only able to process our data with Spectronaut.For
Spectronaut, which we ended up using for DIA data analysis, it depended on the version number if data
processing could be completed in a reasonable time frame. For example, while version 17 of Spectronaut
was able to complete processing of individual samples in the direct DIA+ mode within a few hours for
each sample, version 18 ran for over 15 hours on an individual sample. Second, the protein sequence
databases that we used for protein identification in this study were relatively small (112,592 protein
sequences), as compared to databases used for metaproteomics of more complex, real life samples such
as fecal material or soil samples (>500,000 to millions of protein sequences)13,38. While DIA
metaproteomics is superior for low complexity samples that only require small protein sequence
databases, further testing and software development will be needed to make DIA metaproteomics
feasible and accessible for more complex samples. A focus on faster run times, the capability to
parallelize on multiple servers, and specific handling for large databases would go a long way towards
increasing the useability of DIA for metaproteomics. To our knowledge all DIA metaproteomic studies to
date done on more complex samples have had to reduce their database size to enable data analysis26,39.

In this work we examined the efficacy of DIA- relative to DDA-MS for metaproteomics across
multiple LC-MS/MS setups and software suites. Ultimately we found that DIA-MS was able to identify
more proteins than DDA-MS and had much more reproducible peptide and protein identifications across
replicate measurements. Furthermore, DIA demonstrated accurate quantification in uneven, constant
protein, and constant cell samples. Yet while DIA-MS identified comparable levels of low-abundance
species (bottom quartile) per mock community sample, it did not outperform DDA as it did in peptide and
protein identifications when all of the community was included. In particular, the two tribrid instruments
showed trends for DDA being more sensitive than DIA (Figure 3b) that may be due to the combination of
sensitivity of the ion trap and small DDA ms2 fractionation windows, whereas the combination of relatively
large isolation windows used (10-24m/z) and low precursor intensities found in the low abundance
species could make obtaining sufficient ions for high quality ms2 scans more challenging in DIA. Finally,
when entrapment protein sequences are included in the FASTA database, DDA-MS and DIA-MS have
similar levels of false positive detection. Taken together, our results suggest that DIA-MS has the potential
for superior performance for metaproteomics analyses as compared to DDA-MS. The high-quality MS
datasets generated in our experiments are available for the metaproteomics community to explore for
testing and the development of new algorithms and methodologies. While this superior performance is
already available for low complexity microbial communities for which relatively small protein sequence
databases (~100,000 sequences) are needed,11,40, future work in the optimization of search algorithms is
needed to make DIA metaproteomics feasible for more complex microbial communities that require use of
larger protein sequence databases which have millions of sequences. In addition, future work will
examine the capabilities of other cutting edge platforms for DIA in metaproteomics such as DIA-PASEF
on the timsTOF41, ZenoSWATH42, and the Orbitrap Astral43.

Associated Data
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The raw data, search results, and metadata SDRF file44 generated with lesSDRF45 can be found
in the PRIDE database46 under the entry PXD054415 [reviewer account name
reviewer_pxd054415@ebi.ac.uk, password LWvi2Ps4Ws2k]. Search results from alternate protein
sequence databases as well as all protein sequence databases used can be found at Zenodo
https://zenodo.org/doi/10.5281/zenodo.13376413.
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Label Species

Source of
protein
sequences

Original
Database

Incomplete
1

Incomplete
2 Added1

Added
Incomplete1

Added
Incomplete2

NV Nitrososphaera viennensis
GCA_000
698785.1 Y Y Y Y Y Y

841
Rhizobium leguminosarum bv. viciae
3841

UP000006
575 Y N N Y N N

PaD Paracoccus denitrificans

Used
RAST.
Available
in the
protein
sequence
database
on PRIDE. Y Y Y Y Y Y

Cup Cupriavidus metallidurans
UP000002
429 Y Y Y Y Y Y

CV Chromobacterium violaceum

Used
RAST.
Available
in the
protein
sequence
database
on PRIDE.

Y Y Y Y Y Y

Nu1 Nitrosomonas ureae
UP000056
699 Y Y Y Y Y Y

DVH Desulfovibrio vulgaris
UP000002
194 Y Y Y Y Y Y

K12 Escherichia coli
UP000000
625 Y Y Y Y Y Y

PD Pseudomonas denitrificans

UP000012
082

Y N N Y N N

KF7 Pseudomonas pseudoalcaligenes
GCA_000
262065.3 Y Y N Y Y N

Pfl Pseudomonas fluorescens
26172709
01 (IMG) Y N N Y N N

HB2 Thermus Thermophilus
UP000000
592 Y Y Y Y Y Y

CRH Chlamydomonas reinhardtii
GCF_0000
02595.1 Y Y Y Y Y Y

LT2
Salmonella enterica Typhimurium (3
strains combined)

UP000001
014 Y Y N Y Y N

ATN Agrobacterium tumefaciens
UP000008
13 Y Y Y Y Y Y

VF
Rhizobium leguminosarum bv. viciae
VF39

GCA_000
427765.1 Y Y N Y Y N
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AK19
9 Roseobacter sp. AK199

Used
RAST.
Available
in the
protein
sequence
database
on PRIDE. Y Y Y Y Y Y

BXL Burkholderia xenovorans
UP000001
817 Y Y Y Y Y Y

Ne1 Nitrosomonas europaeae
UP000001
416 Y Y Y Y Y Y

Nm1 Nitrosospira multiformis
UP000002
718 Y Y Y Y Y Y

Am2 Alteromonas macleodii
UP000006
296 Y Y Y Y Y Y

SMS Stenotrophomonas maltophilia
GCF_0006
13205.1 Y Y Y Y Y Y

BS Bacillus subtilis
UP000001
570 Y Y Y Y Y Y

137 Staphylococcus aureus ATCC 13709

Used
RAST..
Available
in the
protein
sequence
database
on PRIDE Y Y Y Y Y Y

259 Staphylococcus aureus ATCC 25923
GCA_000
756205.1 Y Y Y Y Y Y

ES18 Phage ES18
UP000000
970 Y Y Y Y Y Y

F0 Phage F0
UP000009
070 Y Y Y Y Y Y

F2 Phage F2
UP000002
127 Y Y Y Y Y Y

M13 Phage M13
UP000002
111 Y Y Y Y Y Y

P22 Phage P22
UP000007
960 Y Y Y Y Y Y

BT Bacteroides thetaiotaomicron
UP000001
41 N N N Y Y Y

BBE Buttiauxella brennerae
UP000078
41 N N N Y Y Y

SBI Salmonella bongori
UP000272
08 N N N Y Y Y

TMO Tistrella mobilis
UP000005
25 N N N Y Y Y



Supplemental Figure 1: UpSet plots of peptide reproducibility of Equal Cell Number (red) and Equal
Protein Amount (green) communities across three mass spectrometers (QExactive, Fusion, and Eclipse)
under DDA- and DIA-MS analysis. The variables n1 through n4 represent MS runs of the four replicates.
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Supplemental Figure 2: Scatter plots of reference and measured percent abundances of species in the
UNEVEN samples. Average Spearman correlation values show no significant difference to one another.
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Supplemental Table 2: Fractional abundances of microbiome species in a) Equal Cell Number samples,
b) Equal Protein Amount samples, and c) Uneven samples. Species in each sample type are listed from
most to least abundant. DDA and DIA abundances for each species were compared via Student’s t-test,
with the p-value given indicating the significance of the difference between the values.
a)

ECN Q Exactive Fusion Eclipse

DDA DIA p-value DDA DIA p-value DDA DIA p-value

CRH 0.041598 0.047943 0.002366 0.072735 0.080826 0.108138 0.10462 0.114422 0.003014

CV 0.046806 0.024359 0.000152 0.081956 0.046559 9.39E-05 0.136532 0.064443 8.13E-07

Pfl 0.023745 0.028596 0.058204 0.042851 0.056298 0.009859 0.067447 0.073617 0.191603

KF7 0.029227 0.034741 0.023494 0.052403 0.064147 0.009941 0.092613 0.101488 8.82E-05

PD 0.036185 0.046267 0.007819 0.063037 0.084049 0.000183 0.103863 0.113596 0.020628

SMS 0.04428 0.053625 0.03936 0.075828 0.101229 0.002935 0.128512 0.150339 0.003591

AK199 0.041793 0.018177 1.55E-06 0.069058 0.035114 0.000161 0.127582 0.04916 9.89E-07

HB2 0.049566 0.072065 0.001891 0.104728 0.16423 3.94E-05 0.206373 0.274897 9.47E-07

ATN 0.027246 0.040471 1.11E-06 0.053039 0.073298 0.000212 0.094917 0.105468 0.013085

BS 0.052195 0.063708 0.003601 0.09419 0.117633 2.59E-05 0.139048 0.15247 0.015094

841 0.027616 0.034763 7.65E-05 0.050853 0.069451 0.001759 0.092464 0.10339 0.000412

LT2 0.038252 0.0448 0.007797 0.065807 0.092324 0.002154 0.112033 0.119684 0.003062

K12 0.051999 0.064672 6.89E-05 0.082699 0.098346 0.00352 0.111851 0.118753 0.001998

Cup 0.015494 0.019763 0.013909 0.037826 0.042964 0.147164 0.06419 0.067273 0.238742

Am2 0.011677 0.011355 0.790402 0.024323 0.029935 0.03558 0.048194 0.043097 0.199194

PaD 0.010355 0.044138 2.07E-08 0.022771 0.091128 2.67E-09 0.037996 0.128598 4.81E-11

VF 0.009589 0.011855 0.286738 0.022838 0.016736 0.001836 0.030335 0.025976 0.031126

M13 0.027778 0 0.355918 0.166667 0.111111 0.133975 0 0 -

BXL 0.004823 0.00152 7.28E-06 0.016517 0.003742 0.000301 0.018475 0.004999 1.24E-05

F2 0.1875 0.25 0.355918 0.25 0.25 - 0.25 0.25 -

ES18 0.013158 0.026316 0.133975 0.026316 0.026316 1 0.039474 0.013158 0.002714

137 0.004428 0.114332 4.14E-11 0.010467 0.22182 2.98E-11 0.020531 0.312802 2.54E-10

NV 0.004256 0.003212 0.2914 0.014616 0.00514 0.000232 0.018712 0.011966 0.002995
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259 0.032604 0.041022 0.00391 0.060275 0.072755 0.027848 0.088913 0.094814 0.000461

F0 0.002273 0 0.133975 0.007955 0.007955 1 0.005682 0 0.094133

P22 0.00463 0 0.355918 0.013889 0 0.168227 0.013889 0 0.168227

DVH 0.004226 0.001433 0.0005 0.015759 0.004585 3.97E-05 0.016547 0.003295 8.83E-05

Ne1 0.005015 0.002561 0.013133 0.014405 0.005548 0.000177 0.019206 0.007149 1.42E-05

Nm1 0.006285 0.001109 3.23E-07 0.014418 0.002957 7.45E-05 0.018762 0.00536 0.000221

Nu1 0.004993 0.001816 0.008695 0.015704 0.003994 0.000197 0.019154 0.003903 4.78E-06
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b)

EPA Q Exactive Fusion Eclipse

DDA DIA p-value DDA DIA p-value DDA DIA p-value

LT2 0.005187 0.054461 2.24E-11 0.070799 0.127658 3.27E-08 0.110931 0.12312 0.027458

PD 0.082152 0.044919 5.48E-06 0.065033 0.096177 4.39E-06 0.093631 0.101917 0.103823

BS 0.084884 0.045216 0.000186 0.065378 0.094667 6.76E-06 0.092818 0.099141 0.183962

PaD 0.030932 0.055546 1.75E-06 0.041945 0.120612 7.27E-12 0.05616 0.122631 8.71E-08

AK199 0.033737 0.022859 0.000463 0.07973 0.041036 8.74E-06 0.123933 0.043032 2.72E-05

KF7 0.03371 0.030393 0.112695 0.043886 0.063789 0.000176 0.070109 0.072889 0.577765

CV 0.038789 0.031759 0.020839 0.059571 0.063764 0.000715 0.089973 0.069623 0.003549

ATN 0.010223 0.046614 4.99E-09 0.063356 0.100966 2.8E-07 0.095808 0.105937 0.02545

SMS 0.001317 0.061465 4.28E-15 0.083668 0.139488 3.63E-08 0.127321 0.154227 0.004756

Cup 0.025099 0.042964 3.1E-06 0.061581 0.096877 1.13E-06 0.093478 0.103755 0.01986

Pfl 0.037021 0.036894 0.945394 0.052596 0.086213 0.002038 0.073191 0.076894 0.670084

BXL 0.015669 0.001988 5.27E-08 0.019089 0.004531 4.5E-07 0.020989 0.005847 1.54E-07

137 0.032609 0.130435 2.94E-06 0.061997 0.27657 2.72E-11 0.073269 0.307568 5.44E-10

259 0.000484 0.196594 9.73E-19 0.236068 0.311146 8.89E-08 0.275348 0.302632 0.012693

Am2 0.000516 0.035419 6.84E-13 0.058903 0.087548 3.89E-07 0.085935 0.09329 0.181881

K12 0.010531 0.077701 0.000618 0.097394 0.136602 2.5E-06 0.125595 0.159864 7.92E-05

HB2 0.088282 0.099703 0.477159 0.138648 0.241663 3.73E-08 0.223732 0.258908 0.002279

CRH 0.016433 0.006505 0.002568 0.028249 0.013599 1.97E-08 0.032348 0.015025 1.11E-06

841 0.022938 0.068889 2.23E-06 0.086477 0.135496 1.45E-07 0.132727 0.14777 0.013839

VF 0.089435 0.018131 0.034949 0.03016 0.040098 8.55E-07 0.043236 0.042887 0.938328

NV 0.005381 0.051558 4.23E-10 0.075169 0.114761 0.000288 0.097334 0.119017 0.033991

M13 0 0 - 0.027778 0.111111 0.024008 0 0 -

F2 0.25 0.25 - 0.25 0.25 - 0.25 0.25 -

P22 0.037037 0.032407 0.62022 0.050926 0.074074 0.094133 0.083333 0.111111 0.168227

F0 0.010227 0.013636 0.168227 0.020455 0.022727 0.5847 0.029545 0.018182 0.027811
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ES18 0.009868 0.039474 0.000105 0.029605 0.026316 0.355918 0.029605 0.026316 0.355918

DVH 0.045129 0.002292 6.69E-05 0.019413 0.005158 2.36E-06 0.021848 0.003438 1.74E-06

Ne1 0.074584 0.002027 0.000257 0.017926 0.003948 2.4E-05 0.021874 0.005335 2.41E-07

Nm1 0.061738 0.001848 0.014631 0.016913 0.003235 3.67E-06 0.021257 0.007671 8.6E-06

Nu1 0.006445 0.001816 0.088498 0.017248 0.003994 4.74E-05 0.022331 0.00345 6.96E-06
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c)

Uneven Q Exactive Fusion Eclipse

DDA DIA p-value DDA DIA p-value DDA DIA p-value

LT2 0.083182 0.117674 0.0009 0.1427 0.217713 1.29E-05 0.200402 0.224196 0.049676

Cup 0.102964 0.143478 3.97E-07 0.169763 0.235494 3.39E-05 0.227708 0.248972 0.002486

SMS 0.098595 0.135035 9.65E-09 0.167963 0.247679 2.96E-05 0.234069 0.267875 0.000163

Pfl 0.047362 0.061957 3.29E-06 0.08766 0.118553 2.13E-05 0.122723 0.124766 0.236677

K12 0.079069 0.09906 0.003002 0.120895 0.162542 6.22E-06 0.154569 0.157009 0.63211

ATN 0.049709 0.073345 2.51E-05 0.093744 0.134356 3.23E-05 0.136278 0.146361 0.007081

CRH 0.012797 0.007682 0.00041 0.034576 0.017609 9.49E-05 0.03978 0.018625 1.4E-10

PD 0.025105 0.030994 0.036784 0.0556 0.074516 0.002524 0.077361 0.082252 0.385001

VF 0.011681 0.012378 0.346422 0.026848 0.019526 0.01308 0.031206 0.026151 0.071268

HB2 0.015418 0.023298 0.001473 0.046368 0.087597 2.25E-06 0.087825 0.12026 0.001514

259 0.050019 0.062984 0.001116 0.09404 0.126064 6.83E-05 0.121904 0.130418 0.170644

AK199 0.016249 0.006265 0.001151 0.045098 0.016937 2.68E-06 0.056803 0.016662 4.33E-05

CV 0.01665 0.0111 5.33E-05 0.038234 0.026764 9.34E-05 0.046929 0.026394 9.75E-06

KF7 0.009638 0.009638 1 0.026986 0.022548 0.017457 0.036624 0.023041 6.01E-05

137 0.006441 0.043478 5.62E-08 0.026973 0.085749 8.7E-08 0.025765 0.088164 3.66E-08

Am2 0.009355 0.007677 0.021707 0.029548 0.023097 0.002101 0.033484 0.021161 0.000666

DVH 0.012249 0.012894 0.520897 0.029656 0.033166 0.004196 0.044986 0.042407 0.157125

PaD 0.005923 0.016058 3.78E-07 0.017111 0.042296 2.06E-07 0.022552 0.042954 3.7E-09

841 0.021741 0.03046 1.48E-05 0.050142 0.073342 6.33E-05 0.073043 0.077982 0.024008

NV 0.007549 0.007388 0.873684 0.021924 0.024012 0.083052 0.031561 0.028188 0.094264

BS 0.009962 0.011393 0.04925 0.027977 0.029707 0.007255 0.038654 0.030959 2.47E-05

Nu1 0.005628 0.001816 1.91E-05 0.01634 0.003359 4.32E-07 0.022059 0.00354 0.000225

BXL 0.007104 0.003128 4.06E-06 0.02134 0.005437 9.62E-06 0.023913 0.005203 1.39E-08

Nm1 0.0061 0.005176 0.421936 0.02098 0.008965 2.27E-05 0.023383 0.007948 0.000282

M13 0.027778 0 0.355918 0 0 - 0 0 -
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P22 0.013889 0.018519 0.355918 0.060185 0.018519 0.003326 0.041667 0.037037 0.355918

F0 0.003409 0.004545 0.355918 0.007955 0.009091 0.779559 0.010227 0.009091 0.355918

ES18 0.006579 0 0.133975 0.016447 0 0.14663 0.006579 0 0.355918

F2 0 0 - 0.125 0.25 0.133975 0.1875 0 0.024008

Ne1 0.007469 0.005442 0.000472 0.022514 0.008856 2.33E-05 0.026248 0.01035 5.92E-06
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Supplemental Figure 3: Distribution of misidentified proteins matching to each entrapment
genome. (A) A stacked bar chart depicting the average number of proteins identified with at
least 1 unique peptide from each of the entrapment genomes added to the A1, A1I1, and A1I2
databases using the DIA method. (B) A stacked bar chart depicting the average number of
proteins identified with at least 1 unique peptide from each of the entrapment genomes added to
the A1, A1I1, and A1I2 databases using the DDA method
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