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Abstract 38 

BACKGROUND 39 

The source of protein in a person's diet affects their total life expectancy. However, the 40 

mechanisms by which dietary protein sources differentially impact human health and life 41 

expectancy are poorly understood. Dietary choices have major impacts on the composition and 42 

function of the intestinal microbiota that ultimately modulate host health. This raises the 43 

possibility that health outcomes based on dietary protein sources might be driven by interactions 44 

between dietary protein and the gut microbiota. In this study, we determined the effects of seven 45 

different sources of dietary protein on the gut microbiota of mice. We applied an integrated 46 

metagenomics-metaproteomics approach to simultaneously investigate the effects of these 47 

dietary protein sources on the gut microbiota’s composition and function.  48 

RESULTS 49 

Different dietary protein sources significantly altered the species composition of the gut 50 

microbiota. Yeast and egg-white protein had the greatest effect on the composition of the gut 51 

microbiota driven by an increase in the abundance of Bacteroides thetaiotaomicron. The 52 

abundance of enzymes associated with different broad functional categories also significantly 53 

changed due to dietary protein sources. In particular, the abundance of amino acid degrading 54 

enzymes increased in the presence of brown rice and egg white protein, while glycoside 55 

hydrolases increased in the presence of yeast and egg white protein. The glycoside hydrolases 56 

increased in the yeast and egg white protein diets were mostly B. thetaiotaomicron enzymes 57 

previously associated with the degradation of yeast cell-wall glycoproteins in the case of the 58 

yeast diet, and the degradation of mucins in the case of the egg white diet. We validated that B. 59 

thetaiotaomicron expresses these glycoside hydrolases when grown on mucin, yeast, and egg 60 

white protein in vitro.  61 

CONCLUSION 62 
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These results show that the source of dietary protein can alter the composition and 63 

function of the gut microbiota through the specific glycosylations present on dietary 64 

glycoproteins. Both amino acid degradation and mucin metabolism by the microbiota have been 65 

previously linked to playing a role in modulating gut health. Our study is important because it 66 

shows that dietary protein sources should be considered, in addition to fiber and fat, when 67 

designing diets for a healthy gut microbiome. 68 

 69 

Keywords: Gut Microbiome, Metaproteomics, Metagenomics, Dietary Intervention, Mus 70 

musculus, Mice 71 

 72 

BACKGROUND 73 

Source of dietary protein has a major impact on human health. People who consume 74 

high amounts of animal protein have higher mortality rates than those who consume mostly 75 

plant-based protein [1,2]. Egg protein and red meat protein in particular have been shown to 76 

lead to increased mortality rates among humans [3] and a diet high in red meat protein has 77 

been shown to increase inflammation in a model of colitis [4]. Replacing animal protein sources 78 

with plant protein sources reduces mortality rates [3]. Currently, we have a limited 79 

understanding of the underlying causes, but the gut microbiota has been implicated as 80 

potentially having a major role in the differential health impacts of different dietary protein 81 

sources [5,6]. Diet has been shown to change the gut microbiota’s composition and function in 82 

ways that can be detrimental or beneficial to health [7–10]. For example, protein fermentation by 83 

the gut microbiota generates a number of toxins including ammonia, putrescine, and hydrogen 84 

sulfide [6,11], while fermentation of fiber and certain amino acids produces anti-inflammatory 85 

short-chain fatty acids [12]. Previous studies demonstrate that the amount of protein can have a 86 

greater impact on the gut microbiota’s composition than other macronutrients [13], and that 87 

source of dietary protein impacts the composition of the microbiota [14]. There is, however, 88 
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limited data showing the mechanisms by which individual sources of dietary protein affect the 89 

gut microbiota’s composition and function, which could mediate the consumption and production 90 

of compounds beneficial or detrimental to the host.  91 

Metaproteomics represents a powerful tool for characterizing the mechanisms 92 

underlying dietary effects on the gut microbiota [7,9]. Metaproteomics is defined as the large-93 

scale characterization of the proteins present in a microbiome [15]. Protein abundances 94 

measured by metaproteomics simultaneously provide microbial species abundances [16], and 95 

evidence for the metabolic and physiological phenotype of microbiota members [17,18]. 96 

Metaproteomes are usually measured using a shotgun proteomics approach where proteins 97 

extracted from a sample are digested into peptides, separated by liquid chromatography, and 98 

measured on a mass spectrometer [20]. Proteins are then identified and quantified using a 99 

database search algorithm, which matches the measured peptides to a database of protein 100 

sequences [21]. Due to the heterogeneous nature of complex microbial communities it is usually 101 

best to construct the protein database using gene predictions from metagenomes measured 102 

from the same samples [19]. When metaproteomics is coupled to a genome-resolved 103 

metagenomic database it is possible to evaluate strain and species level function even if the 104 

microbes have not been previously characterized [20,21]. We call this approach integrated 105 

metagenomics-metaproteomics.  106 

We used an integrated metagenomic-metaproteomic approach to investigate the effects 107 

of dietary protein source on gut microbiota’s composition and function. We hypothesized that 108 

dietary protein source affects the abundance of amino acid metabolizing enzymes from the gut 109 

microbiota, altering the abundance of pathways involved in the production of toxins detrimental 110 

to host health. We found that the source of dietary protein not only alters the abundance of 111 

amino acid degrading enzymes, but has an even greater impact on the abundance of glycan 112 

degrading proteins among other functions, indicating that dietary protein sources can have wide 113 

ranging effects on the gut microbiota.114 
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RESULTS 115 

Integrated Metagenomic-Metaproteomic Analysis of Dietary Protein Effects on the Gut 116 

Microbiota 117 

 To determine how different sources of dietary protein affect the gut microbiota, we fed 118 

mice (C57BL/6J), half female (group 1) and half male (group 2) a series of 9 fully defined diets 119 

(Fig. 1a, Supplementary table 1). Each diet contained purified protein from a different single 120 

source of dietary protein whose mass represented either twenty or forty percent of the entire 121 

diet. In order of feeding, the diets were 20% soy protein, 20% casein protein, 20% brown rice 122 

protein, 40% soy protein, 20% yeast protein, 40% casein protein, 20% pea protein, 20% egg 123 

white protein, and 20% chicken bone protein. Mice consumed each diet for one week before 124 

switching to the next diet. We collected fecal samples from mice after 7 days of consumption of 125 

each diet. The chicken bone diet caused the mice to lose weight, so we discontinued the diet 126 

after 3 days and the mice consumed a standard chow diet for the rest of that week. No fecal 127 

samples were collected for the chicken bone diet. To control for the succession effects of a 128 

serial dietary intervention, we fed the mice the 20% soy diet or the 20% casein diet as a control 129 

at the end of the diet series. We analyzed samples from all mice and diets using an integrated 130 

metagenomic-metaproteomic approach [7,21] (Fig. 1b). We sequenced fecal samples using 131 

shotgun sequencing and used a genome-resolved metagenomics pipeline [22,23], which 132 

resulted in 454 metagenome-assembled genomes (MAGs) organized into 180 species groups. 133 

We used high-resolution mass spectrometry based metaproteomics to identify and quantify 134 

proteins in each sample using a protein sequence database derived from the metagenome and 135 

augmented with mouse and diet protein sequences [19,24]. In total, we identified 35,588 136 

proteins, each distinguished as microbial, host, or dietary proteins (Extended Data Table 1). All 137 

taxonomic and functional data described in this study were quantified using the metaproteomic 138 

data [16]. 139 
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 140 
 141 
Figure 1:  Source of dietary protein alters the gut microbiota’s composition. (a) Diagram showing the 142 
experimental design, with number of cages, and order of the diets fed. Colors depicting the diets are used throughout 143 
the manuscript. Each row of arrows represents one cage. We collected 10-12 samples for each experimental diet and 144 
5-6 samples for each control diet. (b) A diagram illustrating the integrated metagenomic-metaproteomics method 145 
used to analyze the samples along with raw metrics: quantifiable species and number of proteins. (c) Ratio of spectra 146 
assigned to microbes versus the host; boxes represent 95% confidence intervals calculated on a linear mixed effect 147 
model (Extended Data Table 2). (d) Shannon diversity index of the gut microbiota across all diets; boxes represent 148 
95% confidence intervals calculated on a linear mixed effect model (Extended Data Table 2). (e) Bray-Curtis 149 
dissimilarity between the initial 20% soy diet (teal) or 20% casein diet (red) and all other diets. Error bars reflect 95% 150 
confidence intervals for all line graphs as calculated by the Rmisc package in R. (f) Abundances of the two most 151 
abundant bacterial classes based on summed protein abundance. Error bars are 95% confidence intervals calculated 152 
using a linear-mixed effects model (Extended Data Table 2). (g) A hierarchically clustered (ward.D2 algorithm on 153 
euclidean distances) heatmap depicting the clustering by species group abundance of the 36 most abundant species 154 
in the study. Species were considered abundant if they had at least 5% of the microbial biomass in at least one 155 
sample.  156 

 157 
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Source of dietary protein alters gut microbiota composition  158 

To assess the effect of dietary protein source on microbiota composition, we quantified 159 

the proteinaceous biomass for each species using metaproteomics data and obtained 160 

measurements for 161 distinct species (Extended Data Table 3) [16]. We divided the number of 161 

spectra assigned to microbial proteins by the number of spectra assigned to host proteins to 162 

create a measure of microbial load (Extended Data Table 4). We found that the yeast protein 163 

diet significantly increased microbial load as compared to all other defined protein diets (Fig. 164 

1c). We calculated within sample diversity (alpha diversity) and between sample compositional 165 

dissimilarity (beta diversity) based on the abundances of the quantifiable species. We found that 166 

the yeast and egg white diets significantly reduced the alpha diversity (Shannon diversity index) 167 

and richness (number of species) of the gut microbiota relative to all other diets (Fig. 1d; 168 

Supplementary Fig. 1a; Extended Data Table 4). We evaluated the effects of dietary protein on 169 

gut microbiota composition by comparing the microbiota from all diets to the initial 20% soy and 170 

20% casein diets using the Bray-Curtis dissimilarity index. We found that the composition of the 171 

gut microbiota was most similar when the source of dietary protein was the same, regardless of 172 

the amount of protein in the diet, and that the yeast and egg white diets yielded the most 173 

dissimilar microbiota compositions (Fig. 1e). Testing with PERMANOVA (q < 0.05) showed that 174 

the community composition was significantly different when the source of dietary protein was 175 

different (43 out of 49 comparisons), but not when it was the same (Extended Data Table 5). 176 

These results show that the source of dietary protein had a greater effect on the gut microbiota 177 

than the amount of protein in the diet across three dimensions of the gut microbiota: microbial 178 

load, within sample diversity of species, and compositional dissimilarity between samples. The 179 

large differences in microbial composition in the egg white and yeast protein diets were driven 180 

by a decrease in the abundances of species from the class Clostridia in favor of species from 181 

the class Bacteroidia (Fig. 1f). Since we observed fewer species in the class Bacteroidia overall, 182 
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it makes sense that a drop in Clostridia in favor of Bacteroidia would result in a lower alpha 183 

diversity in the yeast and egg white diets (Fig. 1g; Extended Data Table 3).  184 

To identify which specific microbial taxa drive differences in microbiota composition 185 

between dietary protein sources, we focused on the most abundant microbial species (>5% of 186 

the microbial protein biomass in at least one sample) and hierarchically clustered them by 187 

abundance across the different dietary protein sources/groups (Fig. 1g). This revealed three 188 

major clusters separating most samples by mouse group with the exception of the yeast and 189 

egg white diets which together formed a separate cluster that internally showed separation by 190 

mouse group. The T0 samples fell into the major mouse group clusters which indicates that the 191 

two mouse groups had distinct gut microbiotas at the start of the experiment. Within the mouse 192 

group clusters the microbiota clustered by source of dietary protein, which was also observed in 193 

principal component analysis (Supplementary Fig. 1, Supplementary Results Section A). In the 194 

yeast diet, Bacteroides thetaiotaomicron (B. theta) dominates the microbiota regardless of 195 

mouse group. B. theta abundance also increased in response to the egg white diet. However, 196 

there were additional species specific to each mouse group that also increased in abundance in 197 

response to the egg white diet (Fig. 1g; Supplementary Fig. 2). In group 1, these species were 198 

Akkermansia muciniphila and Atopobiaceae bacterium AB25-9, while in group 2 these species 199 

were Paramuribaculum sp. and Dubosiella newyorkensis. Interestingly, both A. muciniphila [25] 200 

and Paramuribaculum sp. [26] have been reported to forage on intestinal mucin and B. theta 201 

has been shown to switch towards mucin foraging based on diet [27]. These results show that 202 

the source of dietary protein changes the gut microbiota’s composition and suggests that an egg 203 

white diet could promote mucin-foraging bacteria.  204 

 205 

Source of dietary protein alters gut microbiota function 206 

 To evaluate gut microbiota function, we used the normalized abundances of gut 207 

microbiota proteins as a measure of the investment of the microbiota into metabolic and 208 
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physiological functions [17,18,28]. We first used automated annotation tools to assign functions 209 

to proteins. Since the annotations from these tools were not always accurate, we manually 210 

curated the annotations of 3,959 proteins and then extrapolated the functions to 14,547 similarly 211 

annotated proteins, which in total represented between 74 and 86 percent of the total microbial 212 

protein abundance in each sample (Extended Data Table 6). Based on the annotations, we 213 

assigned broad functional categories, such as amino acid metabolism, gene expression, glycan 214 

degradation, and monosaccharide metabolism and more detailed functional categories, such as 215 

ribosomal proteins and glycolysis to each of these proteins (Extended Data Table 6; 216 

Supplementary Fig. 3; Supplementary Results Section B). We then used the relative protein 217 

abundances to determine the investment of the microbiota into each of these functions. All of 218 

the broad functional categories, except for secondary metabolism, had significant changes in 219 

abundance due to dietary protein (ANOVA, p-value < 0.05; Extended Data Table 7; Fig. 2; 220 

Supplementary Fig. 4), which indicates that the source of dietary protein changes the gut 221 

microbiota’s metabolism and physiology.  Hierarchical clustering of all samples by abundances 222 

of broad functional categories revealed that the yeast and egg white diets clustered separately 223 

from all the other diets (Supplementary Fig. 5), similar to the results from the taxonomic 224 

clustering (Fig. 1g); however, a similar analysis at the detailed functional level revealed separate 225 

yeast, rice, and egg white clusters, with some outliers (Supplementary Fig. 6).  226 

The two abundant broad functional categories (>1% of the total protein biomass) that 227 

had the greatest effect size due to diet were amino acid metabolism and glycan degradation, 228 

with F-statistics of 29 and 93 respectively (Fig. 2; Extended Data Table 7). Amino acid 229 

metabolism increased in the brown rice and egg white diets relative to all other diets except the 230 

40% casein diet and glycan degradation significantly increased in yeast and egg white diets 231 

relative to all other diets (Fig 2). Significant changes in the abundance of amino acid metabolism 232 

supported our initial expectation that the response of the microbiota to different dietary protein 233 

sources would likely relate to amino acid metabolism; however, we were surprised to find that 234 
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the abundance of glycan degrading enzymes responded more strongly to the source of dietary 235 

protein than did enzymes for amino acid metabolism. This suggests that glycan degradation 236 

instead of amino acid metabolism may be the major driver of taxonomic and functional changes 237 

in the gut microbiota in response to dietary protein source. These two functions will be 238 

discussed in detail in subsequent sections. In addition, we observed specific changes in the 239 

abundance of enzymes associated with the gene expression, monosaccharide metabolism, 240 

fermentation, and stress and cell protection functional categories (Supplementary Results 241 

Section B; Supplementary Fig 3).   242 

 243 

 244 
Figure 2: Broad functional categories of microbial proteins change significantly in abundance due to the 245 
source of dietary protein.  Abundance of broad functional categories that represent at least 1% of the microbial 246 
protein abundance in at least one diet. The abundance is a modeled mean calculated from mixed effects models and 247 
the error bars represent 95% confidence intervals calculated from these models. All the categories shown here had a 248 
p-value for the diet factor below 0.05; p-value < 2.2x10-16 is the lower limit of the method. For underlying data see 249 
Extended Data Tables 7 and 8. For higher resolution of functional categories, e.g. fermentation, see Supplementary 250 
Figs. 3-4.  251 
 252 

 253 
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Source of dietary protein alters the abundance of amino acid degrading enzymes  254 

To explore the effects of dietary protein source on microbiota amino acid metabolism, we 255 

manually classified 911 proteins (Extended Data Table 9) representing 68 enzyme functions 256 

(Extended Data Table 10) according to their involvement in the degradation (Fig. 3a), synthesis 257 

(Fig. 3b), interconversion (Fig. 3c), or reversible (Fig. 3d) reactions of specific amino acid 258 

pathways (Supplementary Figs. 7-18). In all diets except the yeast and standard chow diets, we 259 

observed that the microbiota was trending towards amino acid degradation instead of synthesis. 260 

We found that amino acid degrading enzymes were on average 2- to 6-fold more abundant than 261 

amino acid biosynthesis enzymes (Fig. 3a and 3b). Amino acid degrading enzymes were 262 

significantly more abundant in the rice and egg diets as compared to all the other diets (Fig. 3a), 263 

which is consistent with the observation that dietary proteins were significantly more abundant in 264 

the fecal samples of the brown rice and egg diets as compared to all other diets (Fig. 3e), 265 

suggesting that there may be a connection between the digestibility of dietary protein and amino 266 

acid degradation by the gut microbiota. Though amino acid synthesis enzymes were generally 267 

less abundant, we did observe a trend towards an increase in amino acid synthesis enzymes in 268 

the yeast protein diet relative to the other diets. This trend was not significant (Fig. 3b), but we 269 

observed several individual synthesis enzymes to be significantly increased in the yeast protein 270 

diet relative to other diets. These enzymes were involved in the synthesis of branched-chain 271 

amino acids (Suppl. Fig. 8), cysteine (Suppl. Fig. 9), lysine (Suppl. Fig. 15), proline (Suppl. Fig. 272 

17), or tyrosine (Suppl. Fig 18). 273 

 274 
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 275 
Figure 3: Amino acid degradation increases in the rice and egg diets. Box plots depict the percent abundance 276 
(out of the total microbial protein abundance) of different categories of microbial amino acid metabolism proteins. The 277 
exception is the dietary proteins, which are based on the percent protein abundance of the total metaproteome. The 278 
boxes represent the 95% confidence interval of the mean (line) for each diet from a complete mixed-effects model, 279 
and the q-values represent the FDR controlled p-values for the diet factor from an ANOVA on these models (q<0.05 280 
indicates significance)(Extended Data Tables 11-12).  Boxes that do not overlap indicate statistical significance. 281 
Circle dots represent actual values per sample and are colored by mouse group. Abundance of proteins classified as 282 
(a) degrading an amino acid, (b) synthesizing an amino acid, (c)  converting between two amino acids, and (d) 283 
reversible. (e) Abundance of all dietary proteins detected in each condition. (f) Abundance of enzymes that are likely 284 
to produce ammonia. Enzymes classified as degrading or reversible were included as long as ammonia was one of 285 
the potential products. Summed abundance of all proteins classified as (g) urease, (h) cysteine desulfurase, (i) 286 
tryptophanase, (j) glutamate decarboxylase, (k)  involved in branched-chain amino acid (BCAA) degradation to 287 
branched-chain fatty acid (BCFA) (includes branched-chain amino acid aminotransferase or ketoisovalerate 288 
oxidoreductase), and (l) involved in proline degradation (includes proline racemase or D-proline reductase).  289 
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Not all amino acid degrading enzymes increased in both the brown rice and egg white 290 

diets; sometimes they increased in one or the other (Supplementary Figs. 7-18). For example, 291 

enzymes associated with the degradation of threonine were more abundant in the egg white diet 292 

(Supplementary Fig. 12), while enzymes associated with tryptophan degradation were 293 

increased in the brown rice diet (Supplementary Fig. 18). Brown rice and egg were not the only 294 

diets in which the abundances of specific amino acid degrading enzymes increased. Alanine 295 

dehydrogenase increased in the 40% soy diet relative to the pea, yeast, 20% soy, and 20% 296 

casein diets (Supplementary Fig. 9) and cysteine desulfurase increased in the 40% casein and 297 

casein control diets relative to most other diets (Supplementary Fig. 9). 298 

Changes in amino acid degradation by the gut microbiota have potential implications for 299 

host health by directly affecting local tissues or through interactions along the gut-brain axis 300 

depending on the metabolites produced by specific pathways [6,29]. We identified six categories 301 

of amino acid degradation pathways that are relevant to host health because they produce 302 

compounds that are toxic, anti-inflammatory, neurotransmitters, or otherwise related to disease. 303 

The toxic compounds included ammonia, produced by deaminating enzymes (Fig. 3f) and 304 

urease (Fig. 3g) [30,31] and hydrogen sulfide, produced by cysteine desulfurase (Fig. 3h) [32]. 305 

The neurotransmitters included indoles produced by tryptophanase (Fig. 3i) [33] and γ-306 

aminobutyric acid (GABA) produced by glutamate decarboxylase (Fig. 3j) [34]. The anti-307 

inflammatory metabolites were branched-chain fatty acids produced by enzymes that degrade 308 

branched-chain amino acids (Fig. 3k) [35,36]. Finally, we included the enzymes in the proline 309 

degradation pathway (Fig. 3l), as an example of a specific amino acid degrading pathway 310 

affected by dietary protein source and relevant to the gut-brain axis [37] and enteric infections 311 

[38]. We found ammonia producing enzymes to be significantly more abundant in the brown rice 312 

diet as compared to all other diets, and also more abundant in the egg white and 40% casein 313 

diets as compared to the standard chow, 20% soy, yeast, pea, and control diets (Fig. 3f and 3g). 314 

We observed cysteine desulfurases to be significantly increased in the 40% casein and casein 315 
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control diets relative to other diets (Fig. 3h). Tryptophanase significantly increased in the brown 316 

rice diet relative to all other diets, while glutamate decarboxylase increased in the egg white diet 317 

relative to all other diets except brown rice, pea, and the control diets (Fig. 3i and 3j). We 318 

observed that branched-chain amino acid degrading enzymes were significantly increased in 319 

the egg white protein diet relative to all other diets (Fig. 3k), and proline degrading enzymes 320 

were increased in the brown rice diet relative to other diets, except the 40% soy and 40% casein 321 

diets where we also observed proline degradation to be significantly increased relative to the 322 

standard chow, yeast, and pea diets (Fig. 3l). These results show that the source of dietary 323 

protein can alter overall amino acid metabolism in the gut microbiome, as well as the 324 

abundance of different pathways. These changes have the potential to affect host physiology 325 

and health. 326 

 327 

Gut microbes express distinct glycoside hydrolases to grow on different sources of 328 

dietary protein 329 

 Surprisingly, glycan degrading enzymes (glycoside hydrolases) showed the largest 330 

overall changes in response to dietary protein source (Fig. 2, Extended Data Table 7). 331 

Specifically, these enzymes increased significantly in abundance in the yeast and egg white 332 

diets compared to the other diets. To further investigate the interaction of these glycan 333 

degrading enzymes with dietary protein we manually curated the functional assignments and 334 

potential substrate specificity of the 1,059 microbial glycoside hydrolases detected in our 335 

metaproteomes (Extended Data Table 13).  336 

We grouped the validated glycoside hydrolases into 91 families based on the CAZy 337 

database (Extended Data Table 14) [39]. Of these families, 54 significantly changed in 338 

abundance between the different dietary protein sources (ANOVA, q<0.05) (Extended Data 339 

Table 15). Different glycoside hydrolase families increased in abundance in the soy, casein, 340 

brown rice, yeast, and egg white diets suggesting that distinct glycans drive their abundance 341 
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changes across the different diets (Fig. 4a, Extended Data Table 14-16, Supplementary Results 342 

Section C). The most abundant glycoside hydrolase families, GH18 in the case of egg white and 343 

GH92 in the case of yeast, have previously been associated with the degradation of glycans 344 

conjugated onto proteins (glycosylations) as part of polysaccharide utilization loci (PULs). PULs 345 

are operons that contain all the proteins necessary to import and degrade a specific glycan 346 

structure [40]. These GH18s are endo-β-N-acetylglucosaminidases that break the bond 347 

between two acetylglucosamine residues attached to asparagine in N-linked glycoproteins. This 348 

reaction releases the glycan from the glycoprotein [41]. Meanwhile, GH92s, which are alpha-349 

mannosidases, have been previously associated with the release of mannose residues from the 350 

glycosylations on yeast mannoproteins [41].  351 

We found that the total abundance of glycoside hydrolases increased from <1% in the 352 

majority of diets to >2.5% in the yeast and egg diets (Fig. 4b). Additionally, we observed a 353 

general trend towards an increased abundance of glycoside hydrolases in all defined diets 354 

compared to the T0 (standard chow) diet; however, the increase was only significant for the soy, 355 

yeast and egg diets (Fig. 4b).  The majority of the glycoside hydrolases in the yeast and egg 356 

diets came from B. theta (Fig. 4b). Since B. theta is one of the primary drivers of the changes in 357 

microbiota composition in these diets (Fig. 1g), this suggests that glycoside hydrolases are 358 

closely associated with the observed changes in microbiota composition.  359 

 360 
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 361 
 362 

Figure 4: Glycosylations on dietary proteins drive shifts in microbial composition. (a) Mean summed protein 363 
abundance per diet of glycoside hydrolases with significantly different abundances between diets (q<0.05 in mixed-364 
effects ANOVA models). (b) Mean combined protein abundance of proteins confirmed to be glycoside hydrolases. 365 
The proportion of these proteins that belong to B. theta is highlighted. Diets that do not have overlapping letters also 366 
have non-overlapping 95% confidence intervals for each diet calculated from a complete mixed-effects model. (c) 367 
Volcano plot of -log10 p-values (Welch’s t-test; FDR controlled at q<0.05) versus the log2 fold-change of B. theta 368 
proteins under the yeast and egg white protein diets in vivo after recalculating the protein abundance based on 369 
proteins only assigned to B. theta. Filled circle symbols, indicating individual proteins, were colored based on the 370 
polysaccharide utilizing locus (PUL) operon to which the protein belongs. We only colored the proteins from PULs 371 
that had an absolute difference of 0.5% or greater between the yeast and egg diets. (d) Colony forming units per mL 372 
(CFU/mL) of B. theta grown in defined media with dietary proteins as the sole carbon source. The dotted line 373 
indicates T0 CFU/mL. Media that do not share letters are significantly different based on ANOVA and Tukey HSD 374 
multiple comparisons after log transformation (p-value < 0.05). (e) Hierarchical clustering (ward.D2 on Euclidean 375 
distances) of the in vitro B. theta proteome under different media. (f) In vivo and in vitro comparison of the summed 376 
protein abundance of PULs. The bottom axis depicts the log2 fold-change between egg white and yeast protein or 377 
mucin and yeast protein. The top axis depicts the mean protein abundance of the PULs in vivo in the yeast diet on 378 
the left and in the egg diet on the right. A Welch’s t-test (with FDR control) was performed between each comparison 379 
to detect significant changes in PUL protein abundances (*** = q < 0.01, ** = q < 0.05, * = q < 0.1) (Extended Data 380 
Tables 18 and 20).  381 
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To examine the specific role of B. theta in glycan degradation in the yeast and egg white 382 

diets, we compared the abundances of all B. theta proteins in the metaproteome between the 383 

two diets. Out of 1,420 detected B. theta proteins, the abundances of 592 proteins significantly 384 

differed between the two diets (q < 0.05, Welch’s t-test) (Fig. 4c; Extended Data Table 17). 385 

Many of the significant proteins that were the most abundant and had the greatest fold-change 386 

between the two diets came from PULs (Fig. 4c; Supplementary Fig. 19). Between 10% and 387 

25% of the total protein abundance of B. theta in the yeast and egg white diets came from these 388 

PULs (Extended Data Table 18). The proteins belonging to each PUL tended to be expressed 389 

together either being significantly increased in egg white or the yeast diet (Figure 4c).  390 

Several of the PULs that increased when we fed mice the yeast diet have previously 391 

been shown to specifically degrade the glycosylations on yeast cell wall proteins. PULs 68/92 392 

(BT3773-3792) and 69 (BT3854-3862) (Fig. 4c; Supplementary Fig. 19) degrade ⲁ -mannans 393 

attached to yeast mannoproteins in Saccharomyces cerevisiae [41], while PUL 56 (BT3310-394 

3314), degrades yeast β-glucans also attached to yeast cell wall mannoproteins [42]. 395 

Conversely, the majority of the PULs increased when we fed mice the egg white diet had been 396 

previously linked to growth on mucin glycan conjugates: PUL14 (BT1032-1051), PUL6 (BT3017-397 

0318), PUL16 (1280-1285), PUL 80 (BT4295-BT4299), and PUL12 ( BT0865-0867) 398 

(Supplementary Fig. 19) [43]. An additional abundant PUL, PUL72 (BT3983-BT3994), has been 399 

previously implicated in the degradation of mannoproteins of mammalian origin [41] and our 400 

result suggests that PUL72 is also involved in the degradation of mannoproteins from non-401 

mammalian vertebrates. 402 

To test if B. theta could grow on yeast and egg white protein as predicted from the in 403 

vivo data, and if the expression of PULs was driven by direct responses to the dietary protein 404 

sources, we characterized B. theta growth and its proteome on dietary protein sources in vitro. 405 

We used a defined culture media and supplemented purified dietary protein sources as the sole 406 

carbon source to determine if this supported B. theta growth. We found that B. theta grew in the 407 
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presence of glucose (control), yeast protein, egg white protein, soy protein, and intestinal mucin 408 

(Fig. 4d, Tukey HSD adj P < 0.05). We analyzed the proteomes of B. theta in these five different 409 

conditions in vitro to determine if PULs played a role in growth (Extended Data Table 19). An 410 

overall comparison of the proteome between the media supplemented with 4 different protein 411 

sources revealed that egg white protein and mucin had the most similar proteome, and the 412 

proteome from the glucose control clustered separately from the protein-sources (Fig. 4e; 413 

Supplementary Fig. 20). We observed that 15 out of 24 PULs that were significantly different in 414 

abundance between the egg white and yeast diets in vivo were also significantly different in the 415 

same direction in vitro (Fig. 4f). In addition, 12 of these 15 PULs showed the same expression 416 

pattern in both the mucin and egg white protein media as compared to the yeast protein medium 417 

(Fig. 4f, Extended Data Tables 18 and 20). The relationship between mucin and egg white 418 

metabolism in microbiota species in vivo is further supported by the fact that five of the six 419 

species with greater than 5% abundance in an egg white sample (B. theta, A. muciniphila, 420 

Atopobiaceae bacterium AB25_9 Paramuribaculum sp., D. newyorkensis) had abundant 421 

enzymes associated with the metabolism of sugars usually thought to be derived from mucin. 422 

These enzymes, of which several were among the top 100 most abundant proteins of these 423 

organisms, catalyze the metabolism of sialic acid (N-acetylneuraminate lyase, N-424 

acylglucosamine 2-epimerase), N-acetylglucosamine (N-acetylglucosamine-6-phosphate 425 

deacetylase, glucosamine-6-phosphate deaminase, PTS system N-acetylglucosamine-specific, 426 

or fucose (fucosidase, fucose isomerase) (Extended Data Table 6). In summary, these results 427 

indicate that the glycosylations on yeast and egg white proteins drive the increase in abundance 428 

of B. theta in the yeast and egg white diets, and that egg white proteins and intestinal mucin 429 

share similar glycosylations leading to the expression of similar PULs for their degradation. 430 

 431 

DISCUSSION 432 
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In this study, we sought to characterize how dietary protein source affects the gut 433 

microbiota’s composition and function by measuring species-resolved proteins using integrated 434 

metagenomics-metaproteomics. We showed that source of dietary protein significantly alters the 435 

gut microbiota’s composition, more so than amount of protein, and that yeast and egg white 436 

protein had the greatest effect on the composition driven by an increase in the relative 437 

abundance of B. theta and a decrease of bacteria from the class Clostridia. We also showed 438 

that the source of dietary protein altered the overall functional profile of the gut microbiota as 439 

reflected by changes in the abundance of microbial proteins assigned to broad functional 440 

categories. In particular, proteins involved in amino acid metabolism increased in abundance in 441 

the brown rice and egg white diets, while enzymes assigned to glycan degradation increased in 442 

the yeast and egg white diets. 443 

The increase in amino acid metabolizing enzymes in the brown rice and egg white diets 444 

was driven by amino acid degrading enzymes. Previous studies across multiple species have 445 

shown that increasing the amount of protein fed to animals leads to an increase in the ammonia 446 

concentration in stool [44–46], which suggests that increased protein availability leads to 447 

increased amino acid deamination or urease activity in the gut. Here we show that, regardless 448 

of the amount of protein, the source of protein itself can lead to increases in amino acid 449 

deaminating enzymes and ureases from the intestinal microbiota. Gut microbiota urease activity 450 

and amino acid deamination have been linked to serious diseases like hepatic encephalopathy 451 

when liver function is disrupted [47]. Replacement of bacteria that produce these deaminating 452 

enzymes and ureases with bacteria that do not has been suggested as a potential treatment 453 

[48], our results suggest that adjustments in dietary protein source could be considered as well.  454 

Since amino acids are the backbone of protein, we expected to observe changes in the 455 

abundance of amino acid degrading enzymes between the different sources of dietary protein; 456 

however, surprisingly the effect of dietary protein source on the abundance of glycan degrading 457 

proteins was even greater than the effect on amino acid degrading enzymes. Our results 458 
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suggest that the increase in glycan degrading proteins in the yeast and egg white diets is due to 459 

the glycosylations conjugated to these proteins. Yeast and egg white proteins have distinct 460 

glycan conjugate structures [49–52]. In the presence of yeast dietary protein we were able to 461 

show, in vivo and in vitro, increased expression of PULs associated with the degradation of 462 

yeast mannoprotein glycan conjugates. In the presence of egg white protein, we observed an 463 

increase in PULs previously linked to the degradation of the glycan conjugates of mucin. This 464 

combined with increases in mucin foraging bacteria Akkermansia muciniphila and 465 

Paramuribaculum sp. suggests that egg white protein promotes the abundance of mucin 466 

foraging bacteria and their proteins. The link between the foraging of mucin and egg white 467 

protein in retrospect makes sense, as egg white protein contains mucins called ovomucin and 468 

other proteins: ovalbumin, ovotransferrin, and ovomucoid, which have been previously shown to 469 

be N-glycosylated with acetylglucosamine and mannose containing glycans [49,52]. Previous 470 

studies in mice have shown that diets, which promote bacteria and their enzymes that degrade 471 

mucins, can make the host more susceptible to enteric inflammation and infection [36,53]. Since 472 

egg white protein also promotes these functions, these results suggest that diets high in egg 473 

protein may be detrimental to gastrointestinal health, which could explain the prior results from 474 

population level studies that eggs lead to increased mortality rates among humans [3].  475 

Our study has at least two limitations preventing direct translation of microbiota 476 

responses to dietary protein sources into a human health context. First, we used purified dietary 477 

proteins, which differ from commonly consumed dietary proteins in that regular dietary protein 478 

sources also provide some amount of additional major dietary components such as fats, 479 

carbohydrates, and fiber. For example, plant proteins usually come with a relevant amount of 480 

fiber, while animal proteins are often low in fiber and have higher content fats [8]. Second, we 481 

used fully defined diets and while this allowed us to track effects to specific protein sources, we 482 

do anticipate that the dietary context of protein sources such as co-consumption of multiple 483 

protein, fiber, fat and carbohydrate sources will strongly influence the interactions of dietary 484 
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protein sources with the microbiota. The power of our study lies in our ability to confirm that the 485 

source of dietary protein does impact gut microbiota function and should be considered when 486 

thinking about how diet impacts the microbiota and its implications for host health. Future 487 

studies that determine how the effect of dietary protein source on the gut microbiota impacts 488 

gastrointestinal diseases are needed.  489 

 490 

 491 

MATERIALS AND METHODS 492 

Animals and Housing 493 

In this study we included twelve C57BL/6J mice in two groups (six males, six females, 494 

Jackson Labs, Bar Harbor) aged 3-6 months. The males and females originated from different 495 

mouse rooms at the Jackson Labs and thus were expected to have different background 496 

microbiomes. Mice from both groups were housed in two separate cages (3 mice/cage) with a 497 

12 h light/dark cycle. We autoclaved bedding, performed all cage changes in a laminar flow 498 

hood and maintained an average temperature of 70°F and 35% humidity. We conducted our 499 

animal experiments in the Laboratory Animal Facilities at the NCSU CVM campus (Association 500 

for the Assessment and Accreditation of Laboratory Animal Care accredited), which are 501 

managed by the NCSU Laboratory Animal Resources. Animals assessed as moribund were 502 

humanely euthanized via CO2 asphyxiation, as approved by NC State’s Institutional Animal 503 

Care and Use Committee (Protocol # 18-034-B).  504 

 505 

Animal Diets and Sample Collection 506 

We fed mice defined diets with a single source of purified protein (Supplementary Table 507 

1). We fed each defined diet to all mice for 7 days, with the exception of the chicken bone broth 508 

diet. We observed clinical signs of disease including weight loss in the mice after 3 days of the 509 
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chicken bone broth diet and therefore replaced the diet with standard chow for the remainder of 510 

the 7 days. We fed the diets in this order: standard chow, 20% soy protein, 20% casein, 20% 511 

brown rice protein, 40% soy protein, 20% yeast protein, 40% casein, 20% pea protein, 20% egg 512 

white protein, 20% chicken bone broth protein, and lastly at the end of the experiment half of the 513 

mice in each group were fed the 20% soy protein and half the mice the 20% casein diet again 514 

as a control. Prior to the start of the defined diet, mice were fed autoclaved standard chow. All 515 

defined diets were sterilized by ɣ-irradiation and mice were provided sterile water (Gibco). On 516 

day 7 of each defined diet, we collected fecal samples, prior to replacing food with the next diet. 517 

We collected samples in NAP preservation solution at a 1:10 sample weight to solution ratio, 518 

and roughly homogenized the sample with a disposable pestle prior to freezing at -80°C [54]. 519 

We had to sacrifice one mouse during the second diet (20% casein) so no additional samples 520 

were collected. We also were unable to collect a sample from one of the mice during the brown 521 

rice and egg white diets so only 10 samples were collected for those diets. 522 

 523 

Metagenomic DNA sequencing 524 

To create a database for metaproteomic analysis, we pooled fecal samples from each 525 

cage to create four cage specific metagenomes. We gathered one fecal sample from each cage 526 

for four different diets (20% rice, 40% soy, 20% yeast, 40% casein) for a total of 16 samples. To 527 

extract DNA, we followed the QIAamp DNA stool mini kit (Qiagen)-based protocol described by 528 

Knudsen et al. with modifications [55]. To remove the preservation solution from the samples, 529 

we added 5 mL of 1X Phosphate Buffered Saline solution (VWR) to the samples and 530 

centrifuged them (17,000 x g, 5 min) to pellet solids and bacterial cells in suspension. We 531 

removed the preservation solution and resuspended the fecal pellets in 1 mL of InhibitEX Buffer 532 

in Matrix E (MP Biomedicals) bead beating tubes. We beat the samples at 3.1 m/s for 3 cycles 533 

with 1 minute of ice cooling between each cycle using a Bead Ruptor Elite 24 (Omni 534 

International). We isolated DNA from the resulting lysate using the Qiagen QIAamp Fast DNA 535 
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stool mini kit (cat. No. 51604). Samples were extracted individually and pooled by cage with 536 

each sample contributing a total of 200 ng of DNA. 537 

We submitted genomic DNA (gDNA) to the North Carolina State Genomic Sciences 538 

Laboratory (Raleigh, NC, USA) for Illumina NGS library construction and sequencing. We used 539 

an Illumina TruSeq Nano Library kit with its provided protocol for library construction and 540 

performed sequencing on an Illumina NovaSeq 6000 sequencer. We obtained between 541 

51,152,549 and 74,618,259 paired-end reads for each of the 4 samples. 542 

 543 

Metagenomic assembly and protein database construction 544 

To create a species specific database for metaproteomics, we assembled raw reads 545 

using a genome resolved metagenomics approach. We removed PhiX174 (NCBI GenBank 546 

accession CP004084.1) and mouse genome (mm10) contaminating sequences using BBSplit  547 

and removed adapters using BBDuk (BBMap, Version 38.06), parameters: mink = 6, minlength 548 

=20[56]. We assembled decontaminated reads individually using MetaSPAdes (v3.12.0) -k 549 

33,55,99[57] and co-assembled them using MEGAHIT (v1.2.4) –kmin 31 –k-step 10 [58]. We 550 

mapped reads from all four samples to all five assemblies using bbmap, and binned the contigs 551 

using MetaBAT (v2.12.1) [59]. We assessed the quality of the bins using CheckM (v1.1.3)[60] 552 

and automatically accepted medium quality bins with a completion score greater than 50% and 553 

less than 10% [61]. Since the purpose of metagenomics in our study was to generate a 554 

comprehensive protein sequence database and to assign proteins to species, we further 555 

accepted bins that were greater than >30% complete and <5% contaminated. We clustered the 556 

bins into species groups by 95% ANI using dRep (v2.6.2) [22,62] and assigned taxonomy using 557 

GTDB-Tk (v1.3.0, ref r95) [63]. 558 

We assembled the protein database by combining gene annotations from the 559 

metagenome with mouse and dietary protein databases [19]. For the metagenome, we 560 

annotated the assemblies prior to binning and then for each bin individually using PROKKA 561 
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(Version 1.14.6) [64]. If the contig was binned, we compiled the annotations from the bins. We 562 

then used CD-HIT-2D (Version 4.7), with a 90% identity cutoff, to compare the genes from the 563 

unbinned PROKKA output to the binned gene annotation [65]. If a gene was not present in a bin 564 

we added it to the database as an unbinned sequence. Once we compiled the microbial protein 565 

database we assigned each protein sequence a species code if it was species specific or an 566 

ambiguous, low-quality, or unbinned code if it was assigned to more than one species group, 567 

belonged to a low-quality bin, or was not present in a bin, respectively. In addition to the 568 

microbial sequences, we added a Mus musculus proteome (UP000000589, Downloaded 569 

19Feb20), and the relevant dietary protein database for each sample: Glycine max 570 

(UP000008827, Downloaded 19Feb20), Bos taurus (UP000009136, Downloaded 19Feb20), 571 

Cyberlindnera jadinii (UP000094389, Downloaded 25May20), Oryza sativa (UP000059680, 572 

Downloaded 25May20) and Gallus gallus (UP000000539, Downloaded 25May20). Due to the 573 

lack of a reference proteome for the yellow pea diet, we created a custom pea reference with all 574 

available UniProtKB protein sequences for Pisum sativum (Taxon ID: 388 Downloaded 575 

25Apr20) and the reference proteome of Cajanus cajan (UP000075243, Downloaded 576 

25May20).  For T0 samples taken when mice were fed a standard chow diet, we added 577 

proteomes from the protein sources likely to be in the diet based on the ingredient list (corn 578 

UP000007305, fish UP000000437, soy UP000008827, wheat UP000019116, Downloaded 579 

19Feb20). We clustered the mouse and diet reference proteomes individually at a 95% identity 580 

threshold. We only searched samples against their respective dietary database.  581 

 In order to identify all sequences from the species Bacteroides thetaiotaomicron (B. 582 

theta) and Lactococcus lactis we downloaded all the sequences matching these species from 583 

UniProt [66]. We then used diamond BLASTp to identify all sequences in the protein database 584 

that matched with 95% identity or greater. The species code for these sequences was changed 585 

to BT or LAC if they were found to be B. theta or L. lactis respectively.  586 

 587 
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Metaproteomic sample processing 588 

We extracted protein using a modified FASP protocol [67]. We pelleted fecal samples by 589 

centrifugation (21,000 x g, 5 min) and removed the preservation solution. We suspended dietary 590 

and fecal pellets in SDT lysis buffer [4% (w/v) SDS, 100 mM Tris-HCl pH 7.6, 0.1 M DTT] in 591 

Lysing Matrix E tubes (MP Biomedicals) and bead beat the samples (5 cycles of 45 s at 6.45 592 

m/s, 1 min between cycles). After bead beating we heated the lysates to 95°C for 10 minutes. 593 

We mixed 60 µL of the resulting lysates with 400 µL of UA solution (8 M urea in 0.1 M Tris/HCl 594 

pH 8.5), loaded the sample onto a 10 kDa 500 µL filter unit (VWR International) and centrifuged 595 

at 14,000 x g for 30 minutes. We repeated this step up to three times to reach filter capacity. 596 

After loading, we added another 200 µL of UA buffer and centrifuged at 14,000 x g for another 597 

40 minutes. We added 100 µL of IAA solution (0.05 M iodoacetamide in UA solution) to the filter 598 

and incubated at 22°C for 20 minutes. We removed IAA by centrifuging the filter at 14,000 x g 599 

for 20 minutes. We then washed the filter 3 times by adding 100 uL of UA buffer and 600 

centrifuging at 14,000 x g for 20 minutes. We then washed 3 more times by adding 100 uL of 601 

ABC buffer (50 mM Ammonium Bicarbonate) and centrifuging at 14,000 x g for 20 minutes. To 602 

digest the isolated protein, we added 0.95 µg of MS grade trypsin (Thermo Scientific Pierce, 603 

Rockford, IL, USA) mixed in 40 µL of ABC to each filter and incubated at 37°C for 16 hours. We 604 

then eluted the peptides by centrifugation at 14,000 x g for 20 minutes. We eluted again with 50 605 

uL of 0.5 M NaCL and centrifuged at 14,000 x g for another 20 minutes. We quantified the 606 

abundance of the peptides using the Pierce Micro BCA assay (Thermo Scientific Pierce, 607 

Rockford, IL, USA) following the manufacturer’s instructions. 608 

We analyzed the samples by 1D-LC-MS/MS. Samples were run in randomized block 609 

design. For each run, we loaded 600 ng of peptides onto a 5 mm, 300 µm ID C18 Acclaim® 610 

PepMap100 pre-column (Thermo Fisher Scientific) using an UltiMateTM 3000 RSLCnano Liquid 611 

Chromatograph (Thermo Fisher Scientific) and desalted on the pre-column. After desalting, the 612 

pre-column was switched in line with a 75 cm x 75 µm analytical EASY-Spray column packed 613 
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with PepMap RSLC C18, 2 µm material (Thermo Fisher Scientific), which was heated to 60 °C. 614 

The analytical column was connected via an Easy-Spray source to a Q Exactive HF Hybrid 615 

Quadrupole-Orbitrap mass spectrometer. Peptides were separated using a 140 minute reverse 616 

phase gradient [54]. We acquired spectra using the following parameters: m/z 445.12003 lock 617 

mass, normalized collision energy equal to 24, 25 s dynamic exclusion, and exclusion of ions of 618 

+1 charge state. Full MS scans were acquired for 380 to 1600 m/z at a resolution of 60,000 and 619 

a max IT time of 200 ms. Data-dependent MS2 spectra for the 15 most abundant ions were 620 

acquired at a resolution of 15,000 and max IT time of 100 ms. 621 

 622 

Metaproteomic data processing 623 

 We searched raw MS spectra against the diet specific protein databases using the run 624 

calibration, SEQUEST HT and percolator nodes in Proteome Discoverer 2.3 (Thermo Fisher 625 

Scientific). We used the following setting for search: trypsin (full), 2 missed cleavages, 10 ppm 626 

precursor mass tolerance, 0.1 Da fragment mass tolerance. We included the following dynamic 627 

modifications: oxidation on M (+15.995 Da), deamidation on N,Q,R (0.984 Da) and acetyl on the 628 

protein N terminus (+42.011 Da). We also included the static modification carbamidomethyl on 629 

C (+57.021 Da). We filtered identified peptides and proteins at a false discovery rate (FDR) of 630 

5%. Additionally, we only included proteins that had at least one protein unique peptide 631 

identified. Proteins were quantified by peptide spectral match (PSM) count (spectral counting). 632 

  633 

Statistical analysis and visualization 634 

 Whenever possible in this study we tested significance of changes in abundance by 635 

applying an ANOVA on a linear mixed effects model with the interacting fixed effects being 636 

mouse group and diet, and the random effect being the individual mouse (lme4 version 4.3.1) 637 

[68]. For multiple comparisons we calculated 95% confidence intervals for each diet using the 638 

emmeans R package (version 1.8.8) [69]. The exceptions were PERMANOVA analysis for 639 
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testing significance of microbiota compositional changes (Extended Data Table 5) and Welch‘s 640 

t-tests to compare differences between yeast and egg white protein diets (Extended Data Table 641 

17, 18 and 20). For each analysis, we controlled for multiple-hypothesis testing by converting p-642 

values to FDR-level based q-values, unless all p-values in the analysis were below 0.05 [70,71]. 643 

By definition, if all the p-values are less than 0.05 than the FDR is less than 0.05. Visualizations 644 

were produced using ggplot2 (version 3.4.3) [72], pheatmap (version 1.0.12) [73], RawGraphs 645 

[74], Microsoft Excel and Adobe Illustrator. All boxes and error bars represent 95% confidence 646 

intervals. Boxes or error bars that do not overlap denote significance. If no error bars are 647 

present then significance is denoted by letters or asterisk. In the case of beta-diversity analysis 648 

the error bars are 95% confidence intervals (Fig. 1d), but significance was tested separately by 649 

PERMANOVA.  650 

 651 

Compositional profiling of the microbiota 652 

 We calculated the abundances of specific taxa in the microbiota using proteinaceous 653 

biomass [16]. Briefly, we filtered for proteins with at least 2 protein unique peptides and summed 654 

their spectra into their assigned taxonomy: microbial species, mouse, diet, ambiguous, low 655 

quality bins, unbinned bacteria (See Metagenomic assembly and protein database construction 656 

section for details on assignment). We calculated the microbe to host ratio by summing the 657 

spectral count assigned to microbial species, multiple microbial species, low quality bins and 658 

unbinned bacteria proteins and dividing them by the number of spectral counts assigned to 659 

mouse proteins. We considered a microbial species quantifiable if we could identify at least one 660 

protein with 2 protein unique peptides unambiguously assigned to the species. We calculated 661 

per sample species richness by simply counting the number of quantifiable species per sample. 662 

We calculated alpha (Shannon Diversity Index) and beta diversity (Bray-Curtis) metrics using 663 

the vegan (version 2.6-4) package in R (version 4.3.1)[75,76] on a table of the quantifiable 664 

microbial species (statistics as described above). We also evaluated the composition of the 665 
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microbiota using principal component analysis and hierarchical clustering. For principal 666 

component analysis we normalized the quantified species using centered-log ratio 667 

transformation and calculated principal components using the prcomp function in base R on all 668 

the mice and separately on each mouse group. Principal components were rendered using the 669 

ggplot2 (version 3.4.3) package in R [72]. For hierarchical clustering, we focused on the species 670 

that were most abundant, representing at least 5% of the microbial species biomass in at least 671 

one sample. We calculated the percent biomass for all the species and then extracted the 672 

species that fit the abundant species criteria. We calculated the individual significance of each 673 

abundant species using linear mixed effects models as described above. We hierarchically 674 

clustered log transformed values of these species using the R package pheatmap (version 675 

1.0.12), using the ward.D2 algorithm and euclidean distances [73]. We compared broad 676 

taxonomic changes at the class level. For all quantifiable species we summed the abundance of 677 

the assigned class by GTDB-Tk (see Metagenomic assembly and protein database construction 678 

for details). We then calculated confidence intervals using the linear mixed effects models and 679 

emmeans as described previously. Barcharts were rendered in ggplot2 using the estimated 680 

mean and 95% confidence intervals as error bars.  681 

  682 

Functional profiling of the microbiota 683 

For analyses of functional categories at the level of the whole microbiota we calculated 684 

the normalized spectral abundance factor (NSAF%) for each protein, which provides the relative 685 

abundance for each protein as a percentage of the summed abundance of microbiota proteins 686 

[77]. We annotated functions for all microbial proteins in our database using EggNOG-mapper 687 

[78], MANTIS [79], and Microbe Annotator [80]. We assigned glycoside hydrolase protein family 688 

identifiers from the CAZy database using dbCAN2 [39,81]. We manually curated these 689 

annotations by searching a subset of these proteins against the Swiss-Prot [66] and InterPro 690 

[82] databases between February 2023 and June 2023 (See results for exact numbers). If the 691 
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Swiss-Prot or InterPro annotations matched the automated tool annotations we extrapolated the 692 

assigned protein name to all proteins with the same automated annotation. Alternatively, if the 693 

annotations from the automated tools were in agreement, we consolidated the annotation into a 694 

consensus annotation. We then assigned broad functional categories, detailed functional 695 

categories, and specific names to each validated protein set. To evaluate functional changes 696 

due to diet, we summed all microbiota proteins assigned to a broad or detailed functional 697 

category, or enzyme name and applied a linear mixed-effects model to each function as 698 

described above. 699 

 700 

In vivo proteomic analysis of B. theta 701 

 To analyze the B. theta proteome, we calculated the orgNSAF by extracting all proteins 702 

assigned to the species B. theta detected in the metaproteomes, and then calculating NSAF% 703 

[18]. We then compared abundances of B. theta proteins detected in the yeast and egg protein 704 

diets using the Welch’s t-test in the Perseus software (version 1.6.14.0) [83]. To visualize 705 

polysaccharide utilization loci (PULs), we mapped the reads from one of our metagenomic 706 

samples to all the contigs that were assigned B. theta proteins using BBSplit (BBMap, Version 707 

38.06). We then assembled all the mapped reads using metaSPAdes. The genes in this newly 708 

assembled genome overlapped exactly with the previous set of identified B. theta genes, and 709 

this B. theta genome was uploaded to the RAST server for further analysis [84]. PULs were 710 

detected in the metaproteome by identifying proteins labeled SusC, SusD, or TonB. The rest of 711 

the PUL was identified by visualizing the gene neighborhood in RAST. The identified genes 712 

were then cross referenced against PULDB to assign literature described PUL numbers [85]. 713 

 714 

In vitro growth and proteomics of B. theta 715 

 We cultured B. theta VPI-5482 in two biological replicates and at least 4 technical 716 

replicates using a defined Bacteroides medium similar to that described in [86]. B. theta cultures 717 
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were grown statically at 37°C in a Coy anaerobic chamber (2.5 % H2 /10 % CO2 /88.5 % N2) in 718 

minimal medium (100 mM KH2PO4, 8.5 mM [NH2]4SO4, 15 mM NaCl, 5.8 μM vitamin K3, 1.44 719 

μM FeSO4⋅ 7H2O, 1 mM MgCl2, 1.9 μM hematin, 0.2 mM L-histidine, 3.69 nM vitamin B12, 208 720 

μM L-cysteine, and 7.2 μM CaCl2⋅ 2H2O). The four dietary protein sources: soy protein 721 

(CA.160480), yeast protein (CA.40115), casein protein (CA.160030), and egg white protein 722 

(CA.160230), were purchased from Envigo and were the same as the protein sources used in 723 

the corresponding diets. Porcine muc2 mucin (Sigma CA. M2378) was also tested alongside 724 

controls of glucose and no carbon source. To aid in suspension in aqueous media, we pre-725 

prepared the proteins in 200 mM NaOH water at 37°C for four days; the glucose control was 726 

also dissolved in 200 mM NaOH water. We then added the protein or glucose solution to the 727 

pre-prepared media at 0.5% (wt/v). Cultures were grown overnight in minimal media 728 

supplemented with 0.5% (wt/v) glucose before being washed and inoculated into experimental 729 

conditions at 0.01 OD and incubated at 37°C anaerobically with shaking every hour. Colony 730 

forming units (CFUs) per mL of culture were enumerated by drip plating at 0 and 24 hr post 731 

inoculation. Solid media for B. theta was Brain-Heart Infusion agar (Difco CA. 241830) 732 

supplemented with 10% Horse Blood (LAMPIRE CA. 7233401) (BHI-HB). 733 

To obtain samples for proteomics, we repeated the experiment for the glucose, yeast, 734 

egg white, mucin and soy media. After 8 hours, CFUs were enumerated to confirm growth. We 735 

pelleted cells by centrifuging at 4,000 g for 10 minutes. We then extracted the supernatant and 736 

froze the pellets at -80°C. Protein was extracted by the same FASP protocol described above 737 

but with two differences. We lysed pellets by adding 120 uL of SDT buffer and then heating at 738 

95°C. We used PES 10kDa filters (MilliporeSigma). We also used a similar Mass Spectrometry 739 

procedure, except the samples were run on an Exploris 480 mass spectrometer (Thermo Fisher 740 

Scientific) and 1 ug of peptide were analyzed for each sample. We searched raw MS spectra 741 

using the same Proteome Discoverer 2.3 workflow using the B. theta proteome downloaded 742 

from UniProt (UP000001414 downloaded January 9, 2024) as the protein sequence database. 743 



30 
 

We then cross referenced PULs between the metaproteome and the in vitro proteome to 744 

compare them.  745 
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Supplementary Results 1048 

Section A: Effect of dietary protein on gut microbiota composition 1049 

Hierarchical clustering of the proteinaceous biomass of species revealed distinct starting 1050 

microbiota compositions for the group 1 and group 2 mice. This led us to surmise that the 1051 

source of dietary protein altered the gut microbiota regardless of starting microbiota 1052 

composition. To confirm this, we analyzed the group 1 and group 2 mice separately. We 1053 

observed that they had similar alpha diversity and richness responses to dietary protein source 1054 

regardless of mouse group and that the Bray-Curtis dissimilarity patterns were also similar (Fig. 1055 

1d and e; Supplementary Fig. 1a, b and c). Principal component analysis showed the same 1056 

separation as the hierarchical clustering between mouse group 1 and 2 along the first 1057 

component (Supplementary Fig. 1d). Further analysis along the second and third components 1058 

showed distinct dietary clusters between 1) soy, 2) T0, 3) yeast and egg white, and 4) casein, 1059 

brown rice and pea (Supplementary Fig. 1e).  Principal component analysis on the separate 1060 

mouse groups revealed the same cluster groups (Supplementary Fig. 1f and g), suggesting that 1061 

the source of dietary protein alters the gut microbiota’s composition regardless of starting 1062 

microbiota composition.  1063 

 1064 

We observed dynamic species abundance responses to different sources of dietary 1065 

protein; these responses were in some cases consistent across mouse groups, while in other 1066 

cases they were mouse group specific. For example, Bacteroides thetaiotaomicron (B. theta) 1067 

increased in abundance across both mouse groups in the yeast and egg white diets (Fig. 1g; 1068 

Supplementary Fig. 2), while the abundances of Schaederella sp. AB67-1 and Lachnospiraceae 1069 

bacterium AB103-0 repeatedly increased in the presence of soy (Supplementary Fig. 2). Other 1070 

changes in species abundance due to diet were mouse group specific. For example, 1071 

Lactobacillus johnsonii increased in abundance in the pea and casein diets in the group 1 mice, 1072 

while Faecalibaculum rodentium showed a similar pattern in the group 2 mice. Oscillospiraceae 1073 

bacterium AB63-2 increased in abundance in the presence of the soy diets in the group 1 mice, 1074 

while Oscillospiraceae bacterium AB54-6 followed a similar pattern in the group 2 mice. All of 1075 

the abundant species were significantly different in abundance between at least two diets 1076 

(Supplementary Fig. 2). Supplementary Fig. 2 contains the details for the specific dynamics of 1077 

the 36 most abundant species we detected. All species had a significantly different abundance 1078 

between diets (linear mixed effect model ANOVA, q < 0.05).  1079 

 1080 

Section B: Effect of dietary protein on microbiota function 1081 

 The two most abundant broad functional categories of detected peptides were gene 1082 

expression, which includes ribosomes, chaperones, and transcription related enzymes, and 1083 

monosaccharide metabolism, which includes glycolysis and the metabolism of simple sugars 1084 

other than glucose (Fig. 2). The microbial investment in gene expression enzymes increased in 1085 

the yeast diet relative to all other diets (except standard chow) and decreased in the egg white 1086 

diet relative to all other diets. This was driven by an overall increase in the abundance of 1087 

ribosomal proteins in the yeast diet (Supplemental Fig. 3b). The abundance of ribosomal 1088 
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proteins has been suggested to be directly correlated with bacterial growth rates1 suggesting 1089 

that overall bacterial growth rate is higher when mice were fed the yeast diet. This is further 1090 

supported by the overall higher bacterial load in the yeast diet (Fig. 1c). In contrast, we 1091 

observed gene expression proteins that assist with the synthesis and folding of proteins, e.g., 1092 

elongation factors and chaperones, to be increased in the soy diets relative to some of the other 1093 

diets (Supplemental Fig. 3b). Curiously, we also observed an increase in stress proteins, 1094 

including oxidative stress proteins, in the soy and casein diets relative to brown rice, egg white, 1095 

and yeast (Supplementary Fig. 3c). Oxidative stress interferes with the proper elongation and 1096 

folding of proteins, which could explain why chaperones and elongation factors are increased in 1097 

the soy diet2. 1098 

We observed a significant decrease in the abundance of monosaccharide metabolizing 1099 

enzymes in the yeast and brown rice diets (Fig. 2). Most abundant in this category were the 1100 

enzymes belonging to the energy pay-off phase of glycolysis (Supplementary Fig. 3d). However, 1101 

many of the other functions within monosaccharide metabolism had different abundance 1102 

patterns. For example, galactose and mannose metabolism enzymes were increased in the 1103 

yeast diet (Supplementary Fig 3e), while along with galactose metabolism, we also observed a 1104 

general increase in the abundance of fucose, glucosamine, and sialic acid metabolism in the 1105 

egg white diet relative to other diets. Glucosamine and sialic acid metabolism were also 1106 

increased in the casein and pea diets relative to other diets (Supplementary Fig 3e). Fucose, 1107 

galactose, sialic acid, and acetylglucosamine are all components of mucin3. In summary, these 1108 

results suggest that the source of dietary protein impacts sugar metabolism in the gut 1109 

microbiota.  1110 

Two other broad functional categories that significantly changed in abundance due to 1111 

dietary protein source were adhesion and motility proteins and fermentation proteins. The 1112 

microbiota invested significantly less in proteins categorized as adhesion and motility proteins in 1113 

the yeast and egg diets. Flagellar proteins drove this result, which can be explained by the 1114 

replacement of species from the class Clostridia with species from the class Bacteroidia 1115 

because microbes in the phylum Bacteroidota usually do not have flagella4. The microbial 1116 

investment in fermentation enzymes also decreased in the yeast and egg white diets. We 1117 

divided fermentation enzymes into three categories, ethanol producing, short-chain fatty acid 1118 

(SCFA) producing, and lactic acid producing (Supplementary Fig. 3a). This categorization 1119 

revealed that fermentation enzymes leading to SCFA metabolites were the primary drivers of 1120 

the decrease in fermentation-related proteins in the yeast and egg white diets. Production of 1121 

SCFAs has been previously linked to anti-inflammatory responses, which could suggest that the 1122 

changes in microbiota composition observed in the yeast and egg white diets may be 1123 

detrimental to host health5,6. 1124 

 1125 

Section C: Effect of brown rice and soy dietary protein on glycoside hydrolase 1126 

abundance 1127 

Several glycoside hydrolases increased in the presence of the brown rice and soy diets. 1128 

In the soy diet, the expression of glycoside hydrolases was reproducible, increasing in 1129 

abundance each of the three times the mice were fed a soy diet. Most notably β-glucosidases 1130 

and β-xylosidases from the CAZy protein family GH3 were increased in the soy diets, while the 1131 
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abundance of GH16s increased in the brown rice diet. The abundance change of GH16s in the 1132 

brown rice diet was driven by a single protein from the uncultured species Oscillospiraceae 1133 

bacterium AB63-2 that was only detected in the brown rice diet. In the presence of soy protein, 1134 

but not brown rice protein, this bacterium reproducibly expressed different glycoside hydrolases 1135 

including two β-glucosidases and one β-xylosidase from the protein family GH3 (Extended Data 1136 

Table 13). These results suggest that different protein sources generally affect the function and 1137 

composition of the gut microbiota through the different glycan structures attached to their 1138 

glycoproteins.   1139 

 1140 

 1141 

 1142 

 1143 

 1144 

 1145 

 1146 

 1147 

 1148 

 1149 

 1150 

 1151 

 1152 

 1153 

 1154 

 1155 

 1156 

 1157 

 1158 

 1159 
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Supplementary Table 1: Composition of nine fully defined diets 1160 

Diet 20% Soy 20% 

Casein 

20% 

Brown 

Rice 

40% Soy 20% 

Yeast 

40% 

Casein 

20% Pea 20% Egg 

White 

Solids, 

spray-dried 

20% 

Chicken 

bone 

broth  

Teklad 

Catalog 

Number 

TD.190249 TD.190254 TD.190252 TD.190250 TD.190253 TD.190255 TD.190251 TD.190256 TD.19025

7 

Protein 

supplier 

Teklad Teklad Swanson Teklad Teklad Teklad NAKED Teklad Ancient 

Nutrition 

Protein 

(g/Kg) 

230 230 260 460 400 460 222.22 248.45 220 

Sucrose 

(g/Kg) 

436.1 434.7 400.43 211.785 279.06 208.96 438 412.667 450.33 

Corn Starch 

(g/Kg) 

200 200 200 200 200 200 200 200 200 

Corn Oil 

(g/Kg) 

52.3 52.3 54.6 50 42.6 50 50.82 54.6 44.7 

Cellulose 

(g/Kg) 

37.86 37.86 37.86 37.86 37.86 37.86 37.86 37.86 37.86 

Vitamin 

Mix, Teklad 

(40060) 

(g/Kg) 

10 10 10 10 10 10 10 10 10 

Ethoxyquin, 

antioxidant 

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Mineral Mix, 

Ca-P 

Deficient 

79055 

(g/Kg) 

13.37 13.37 13.37 13.37 13.27 13.37 13.37 13.37 13.37 

Calcium 

Phosphate 

dibasic 

(g/Kg) 

15.26 16.66 23.72 6.8 0 9.6 19.72 22.54 23.73 

Calcium 

Carbonate 

(g/Kg) 

5.1 5.1 0 10.175 17.1 10.2 8 0.5 0 
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 1161 
Supplementary Figure 1: Source of dietary protein alters the gut microbiota’s composition. (a) depicts the 1162 
average number of quantifiable species per diet; boxes represent the 95% confidence interval based on linear mixed 1163 
effects models (Extended Data Table 2). (b) and (c) depict the Bray-Curtis dissimilarity between 20% soy diets (teal) 1164 
or 20% casein diets (red) and all other diets for group 1 and group 2, respectively. (d) and (e) first, second, and third 1165 
principal components of microbiota composition based on species level metaproteomic proteinaceous biomass. (f) 1166 
and (g) first and second components of microbiota composition based on species level metaproteomics 1167 
proteinaceous biomass for the group 1 and group 2 mice, respectively. 1168 
 1169 
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 1171 
 1172 
  1173 
Supplementary Figure 2: Abundances of the most abundant species across diets and mouse groups. Line 1174 
plots depicting the average abundance of bacterial species in the group 1 mice (gray) and group 2 mice (orange) 1175 
across all diets. Abundances were determined from metaproteomic data using a biomass assessment method7. Error 1176 
bars represent the 95% confidence interval of the mean using mixed effects modeling. Species were defined as 1177 
abundant if they represented at least 5% of the microbial protein mass in one sample.  1178 
 1179 
 1180 
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 1181 
 1182 
Supplementary Figure 3: Abundance of detailed functional categories associated with fermentation, gene 1183 
expression, stress and cell protection, and monosaccharide metabolism. The mean protein abundance (% of 1184 
total microbial proteins) per sample of each detailed function based on a complete linear mixed effects model. Error 1185 
bars represent 95% confidence intervals and error bars that do not overlap indicate significant abundance 1186 
differences. (a) Detailed functions that make up the fermentation broad functional category. (b) Detailed functions that 1187 
make up the gene expression functional category. (c) Detailed functions that make up the stress and cell protection 1188 
functional category. (d) The most abundant detailed functions that make up the monosaccharide metabolism 1189 
functional category. (e) Select detailed functions that make up part of the monosaccharide metabolism category 1190 
(Extended Data Tables 6, 7 and 8).  1191 
 1192 
 1193 
 1194 
 1195 
 1196 
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 1197 
Supplementary Figure 4: Effect of dietary protein source on lower abundance protein functions.  The mean 1198 
protein abundance (% of total microbial proteins) per sample of each detailed function based on a complete linear 1199 
mixed effects model. Error bars represent 95% confidence intervals and error bars that do not overlap indicate 1200 
significant abundance differences. (a) Broad functional categories that represented less than 1% of the microbial 1201 
protein abundance. (b) Consensus names of specific bile acid modifying enzymes (Extended Data Tables 6, 7 and 8).  1202 
 1203 
 1204 
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 1205 
Supplementary Figure 5: Hierarchical clustering of broad functional categories. Tabulated abundances of 1206 
broad functional categories (Extended Data Table 6) were z-scored by feature and then clustered using the ward.D2 1207 
method using the pheatmap package in R.  1208 
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 1209 

 1210 
Supplementary Figure 6: Hierarchical clustering of consensus enzyme names. Tabulated abundances of 1211 
consensus enzyme names (Extended Data Table 6) were z-scored by feature and then clustered using the ward.D2 1212 
method using the pheatmap package in R.  1213 
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 1214 
 1215 
Supplementary Figure 7: Changes in glutamate and glutamine metabolism due to source of dietary protein: 1216 
A reconstruction of the pathways involved in glutamate and glutamine metabolism based on enzymes detected in our 1217 
metaproteomes. Box plots represent the aggregate abundance of the specific enzymes involved in the pathway. The 1218 
boxes represent the 95% confidence interval of the mean (line) for each diet from a complete mixed effects model, 1219 
and the q-values represent the FDR controlled p-values for the diet factor from an ANOVA on these models (q<0.05 1220 
indicates significance)(Extended Data Tables 11-12). 1221 



51 
 

 1222 
Supplementary Figure 8: Changes in branched-chain amino acid metabolism due to source of dietary 1223 
protein. A reconstruction of the pathways involved in valine, leucine, and isoleucine metabolism based on enzymes 1224 
detected in our metaproteomes. With the exception of leucine synthesis enzymes, the same enzymes act on all three 1225 
of these amino acids so we did not try to distinguish them. Box plots represent the aggregate abundance of the 1226 
specific enzymes involved in the pathway. The boxes represent the 95% confidence interval of the mean (line) for 1227 
each diet from a complete mixed effects model, and the q-values represent the FDR controlled p-values for the diet 1228 
factor from an ANOVA on these models (q<0.05 indicates significance)(Extended Data Tables 11-12). 1229 
 1230 
 1231 
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 1232 
Supplementary Figure 9: Changes in cysteine and alanine metabolism due to source of dietary protein: 1233 
A reconstruction of the pathways involved in cysteine and alanine metabolism based on enzymes detected in our 1234 
metaproteomes. Box plots represent the aggregate abundance of the specific enzymes involved in the pathway. The 1235 
boxes represent the 95% confidence interval of the mean (line) for each diet from a complete mixed effects model, 1236 
and the q-values represent the FDR controlled p-values for the diet factor from an ANOVA on these models (q<0.05 1237 
indicates significance)(Extended Data Tables 11-12). 1238 
 1239 
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 1240 
Supplementary Figure 10: Changes in asparagine, aspartate, and arginine metabolism due to source of 1241 
dietary protein part 1: 1242 
A reconstruction of the pathways involved in asparagine, aspartate, and arginine metabolism based on enzymes 1243 
detected in our metaproteomes. Box plots represent the aggregate abundance of the specific enzymes involved in 1244 
the pathway. The boxes represent the 95% confidence interval of the mean (line) for each diet from a complete mixed 1245 
effects model, and the q-values represent the FDR controlled p-values for the diet factor from an ANOVA on these 1246 
models (q<0.05 indicates significance)(Extended Data Tables 11-12). 1247 
 1248 
 1249 
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 1250 
 1251 
Supplementary Figure 11: Changes in asparagine, aspartate, and arginine metabolism due to source of 1252 
dietary protein part 2: 1253 
A reconstruction of the pathways involved in asparagine, aspartate, and arginine metabolism based on enzymes 1254 
detected in our metaproteomes. Box plots represent the aggregate abundance of the specific enzymes involved in 1255 
the pathway. The boxes represent the 95% confidence interval of the mean (line) for each diet from a complete mixed 1256 
effects model, and the q-values represent the FDR controlled p-values for the diet factor from an ANOVA on these 1257 
models (q<0.05 indicates significance)(Extended Data Tables 11-12). 1258 
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 1259 
 1260 
Supplementary Figure 12: Changes in threonine, glycine, and serine metabolism due to source of dietary 1261 
protein part 1: 1262 
A reconstruction of the pathways involved in threonine, glycine, and serine metabolism based on enzymes detected 1263 
in our metaproteomes. Box plots represent the aggregate abundance of the specific enzymes involved in the 1264 
pathway. The boxes represent the 95% confidence interval of the mean (line) for each diet from a complete mixed 1265 
effects model, and the q-values represent the FDR controlled p-values for the diet factor from an ANOVA on these 1266 
models (q<0.05 indicates significance)(Extended Data Tables 11-12). 1267 



56 
 

 1268 
Supplementary Figure 13: Changes in threonine, glycine, and serine metabolism due to source of dietary 1269 
protein part 2: 1270 
A reconstruction of the pathways involved in threonine, glycine, and serine metabolism based on enzymes detected 1271 
in our metaproteomes. Box plots represent the aggregate abundance of the specific enzymes involved in the 1272 
pathway. The boxes represent the 95% confidence interval of the mean (line) for each diet from a complete mixed 1273 
effects model, and the q-values represent the FDR controlled p-values for the diet factor from an ANOVA on these 1274 
models (q<0.05 indicates significance)(Extended Data Tables 11-12). 1275 
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 1276 
Supplementary Figure 14: Changes in histidine metabolism due to source of dietary protein: 1277 
A reconstruction of the pathways involved in histidine metabolism based on enzymes detected in our metaproteomes.  1278 
Box plots represent the aggregate abundance of the specific enzymes involved in the pathway. The boxes represent 1279 
the 95% confidence interval of the mean (line) for each diet from a complete mixed effects model, and the q-values 1280 
represent the FDR controlled p-values for the diet factor from an ANOVA on these models (q<0.05 indicates 1281 
significance)(Extended Data Tables 11-12). 1282 

 1283 
 1284 
Supplementary Figure 15: Changes in lysine metabolism due to source of dietary protein: 1285 
A reconstruction of the pathways involved in lysine metabolism based on enzymes detected in our metaproteomes. 1286 
Box plots represent the aggregate abundance of the specific enzymes involved in the pathway. The boxes represent 1287 
the 95% confidence interval of the mean (line) for each diet from a complete mixed effects model, and the q-values 1288 
represent the FDR controlled p-values for the diet factor from an ANOVA on these models (q<0.05 indicates 1289 
significance)(Extended Data Tables 11-12). 1290 
 1291 
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 1292 
Supplementary Figure 16: Changes in methionine metabolism due to source of dietary protein: 1293 
A reconstruction of the pathways involved in methionine metabolism based on enzymes detected in our 1294 
metaproteomes. Box plots represent the aggregate abundance of the specific enzymes involved in the pathway. The 1295 
boxes represent the 95% confidence interval of the mean (line) for each diet from a complete mixed effects model, 1296 
and the q-values represent the FDR controlled p-values for the diet factor from an ANOVA on these models (q<0.05 1297 
indicates significance)(Extended Data Tables 11-12). 1298 
 1299 
 1300 
 1301 
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 1302 
Supplementary Figure 17: Changes in proline metabolism due to sources of dietary protein: 1303 
A reconstruction of the pathways involved in proline metabolism based on enzymes detected in our metaproteomes.  1304 
Box plots represent the aggregate abundance of the specific enzymes involved in the pathway. The boxes represent 1305 
the 95% confidence interval of the mean (line) for each diet from a complete mixed effects model, and the q-values 1306 
represent the FDR controlled p-values for the diet factor from an ANOVA on these models (q<0.05 indicates 1307 
significance)(Extended Data Tables 11-12). 1308 
 1309 
 1310 
 1311 
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 1312 
Supplementary Figure 18: Changes in aspartate, serine, tryptophan, tyrosine, and phenylalanine metabolism 1313 
due to source of dietary protein: 1314 
A reconstruction of the pathways involved in aspartate, serine, tryptophan, tyrosine, and phenylalanine metabolism 1315 
based on enzymes detected in our metaproteomes. Box plots represent the aggregate abundance of the specific 1316 
enzymes involved in the pathway. The boxes represent the 95% confidence interval of the mean (line) for each diet 1317 
from a complete mixed effects model, and the q-values represent the FDR controlled p-values for the diet factor from 1318 
an ANOVA on these models (q<0.05 indicates significance) (Extended Data Tables 11-12). 1319 
  1320 
 1321 
 1322 
 1323 
 1324 
 1325 



61 
 

 1326 



62 
 

 1327 
Supplementary Figure 19: Distinct polysaccharide utilization loci (PULs) are expressed by B. theta between 1328 
the egg white and yeast diet. Graphical representation of PUL gene neighborhoods detected in the metaproteome. 1329 
PUL identifiers are the literature derived PUL identifiers from PULDB8, but the PUL structure was verified in RAST 1330 
using the B. theta genome assembled from our metagenome. Metagenome identifiers were cross referenced to BT 1331 
numbers from previous PUL papers. If the BT number is black, it is detected in the metaproteome, if gray it is not 1332 
detected in our metaproteome but detected in our genome, and if blue it means that we did not have those genes in 1333 
our genome but instead detected homologs with the exact same gene neighborhood structure and similar gene 1334 
percent identity. (a) PUL operons detected in our metaproteome that were increased in the yeast diet relative to the 1335 
egg white diet.(c) PUL operons detected in our metaproteome that were increased in the egg white diet relative to the 1336 
yeast diet.  1337 
 1338 

 1339 
Supplementary Figure 20: Significantly different proteins in in vitro proteomes of B. theta clustered by 1340 
growth medium.  Clustered heatmap of the in vitro proteomes of B. theta after z-score standardization and removal 1341 
of non-significant proteins after testing by ANOVA (q<0.05). We generated dendrograms using the ward clustering 1342 
algorithm on euclidean distances.  1343 
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